Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
Microb Biotechnol. 2019 Jan;12(1):173-179. doi: 10.1111/1751-7915.13332. Epub 2018 Nov 28.
Different codon optimization algorithms are available that aim at improving protein production by optimizing translation elongation. In these algorithms, it is generally not considered how the altered protein coding sequence will affect the secondary structure of the corresponding RNA transcript, particularly not the effect on the 5'-UTR structure and related ribosome binding site availability. This is a serious drawback, because the influence of codon usage on mRNA secondary structures, especially near the start of a gene, may strongly influence translation initiation. In this study, we aim to reduce the effect of codon usage on translation initiation by applying a bicistronic design (BCD) element. Protein production of several codon-optimized gene variants is tested in parallel for a BCD and a standard monocistronic design (MCD). We demonstrate that these distinct architectures can drastically change the relative performance of different codon optimization algorithms. We conclude that a BCD is indispensable in future studies that aim to reveal the impact of codon optimization and codon usage correlations. Furthermore, irrespective of the algorithm used, using a BCD does improve protein production compared with an MCD. The overall highest expression from BCDs for both GFP and RFP is at least twofold higher than the highest levels found for the MCDs, while for codon variants having very low expression from the MCD, even 10-fold to 100-fold increases in expression were achieved by the BCD. This shows the great potential of the BCD element for recombinant protein production.
不同的密码子优化算法可用于通过优化翻译延伸来提高蛋白质的产量。在这些算法中,通常不考虑改变的蛋白质编码序列如何影响相应的 RNA 转录物的二级结构,特别是不考虑对 5'-UTR 结构和相关核糖体结合位点可用性的影响。这是一个严重的缺陷,因为密码子使用对 mRNA 二级结构的影响,特别是在基因起始附近,可能会强烈影响翻译起始。在这项研究中,我们旨在通过应用双顺反子设计(BCD)元件来减少密码子使用对翻译起始的影响。我们平行测试了几个密码子优化基因变体的 BCD 和标准单顺反子设计(MCD)的蛋白质生产。我们证明,这些不同的结构可以极大地改变不同密码子优化算法的相对性能。我们得出结论,BCD 在旨在揭示密码子优化和密码子使用相关性影响的未来研究中是不可或缺的。此外,无论使用哪种算法,与 MCD 相比,使用 BCD 确实可以提高蛋白质的产量。对于 GFP 和 RFP,来自 BCD 的整体最高表达水平至少比 MCD 中发现的最高水平高两倍,而对于 MCD 中表达水平非常低的密码子变体,BCD 的表达水平甚至增加了 10 倍至 100 倍。这表明 BCD 元件在重组蛋白生产中具有巨大的潜力。