Suppr超能文献

卷积神经网络学习的功能架构中李对称的出现。

Emergence of Lie Symmetries in Functional Architectures Learned by CNNs.

作者信息

Bertoni Federico, Montobbio Noemi, Sarti Alessandro, Citti Giovanna

机构信息

Sorbonne Université, Paris, France.

Dipartimento di Matematica, Università di Bologna, Bologna, Italy.

出版信息

Front Comput Neurosci. 2021 Nov 22;15:694505. doi: 10.3389/fncom.2021.694505. eCollection 2021.

Abstract

In this paper we study the spontaneous development of symmetries in the early layers of a Convolutional Neural Network (CNN) during learning on natural images. Our architecture is built in such a way to mimic some properties of the early stages of biological visual systems. In particular, it contains a pre-filtering step ℓ defined in analogy with the Lateral Geniculate Nucleus (LGN). Moreover, the first convolutional layer is equipped with lateral connections defined as a propagation driven by a learned connectivity kernel, in analogy with the horizontal connectivity of the primary visual cortex (V1). We first show that the ℓ filter evolves during the training to reach a radially symmetric pattern well approximated by a Laplacian of Gaussian (LoG), which is a well-known model of the receptive profiles of LGN cells. In line with previous works on CNNs, the learned convolutional filters in the first layer can be approximated by Gabor functions, in agreement with well-established models for the receptive profiles of V1 simple cells. Here, we focus on the geometric properties of the learned lateral connectivity kernel of this layer, showing the emergence of orientation selectivity w.r.t. the tuning of the learned filters. We also examine the short-range connectivity and association fields induced by this connectivity kernel, and show qualitative and quantitative comparisons with known group-based models of V1 horizontal connections. These geometric properties arise spontaneously during the training of the CNN architecture, analogously to the emergence of symmetries in visual systems thanks to brain plasticity driven by external stimuli.

摘要

在本文中,我们研究了卷积神经网络(CNN)在自然图像学习过程中早期层对称性的自发发展。我们构建的架构旨在模仿生物视觉系统早期阶段的一些特性。具体而言,它包含一个与外侧膝状体(LGN)类似定义的预滤波步骤ℓ。此外,第一个卷积层配备了横向连接,其定义为由学习到的连接核驱动的传播,类似于初级视觉皮层(V1)的水平连接。我们首先表明,ℓ滤波器在训练过程中会演化,以达到由高斯拉普拉斯算子(LoG)很好近似的径向对称模式,这是LGN细胞感受野轮廓的一个著名模型。与之前关于CNN的工作一致,第一层中学习到的卷积滤波器可以由伽柏函数近似,这与V1简单细胞感受野轮廓的既定模型相符。在这里,我们关注该层学习到的横向连接核的几何特性,展示相对于学习到的滤波器调谐的方向选择性的出现。我们还研究了由这个连接核诱导的短程连接和关联场,并与已知的基于组的V1水平连接模型进行了定性和定量比较。这些几何特性在CNN架构的训练过程中自发出现,类似于视觉系统中由于外部刺激驱动的大脑可塑性而出现的对称性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9de1/8645966/d35b5dba5e7c/fncom-15-694505-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验