Department of Electronics Technology, Guru Nanak Dev University, Amritsar, India.
J Mol Model. 2021 Oct 31;27(11):335. doi: 10.1007/s00894-021-04936-5.
Protein-based electronics is one of the growing areas of bio-nanoelectronics, where novel electronic devices possessing distinctive properties are being fabricated using specific proteins. Furthermore, if the bio-molecule is analysed amidst different electrodes, intriguing properties are elucidated. This research article investigates the electron transport properties of L-aspartic acid (i.e. L-amino acid) bound to symmetrical electrodes of gold, silver, copper, platinum and palladium employing NEGF-DFT approach using self-consistent function. The theoretical work function of different electrodes is calculated using local density approximation and generalized gradient approximation approach. The calculated work function correlates well with the hole tunneling barrier and conductance of the molecular device, which further authenticate the coupling strength between molecule and electrode. Molecule under consideration also exhibits negative differential resistance region and rectification ratio with all the different electrodes, due to its asymmetrical structure. The molecular device using platinum electrodes exhibits the highest peak to valley ratio of 1.38 and rectification ratio of 3.20, at finite bias. The switching characteristics of different molecular device are justified with detailed transmission spectra and MPSH. These results indicate that L-aspartic acid and similar biomolecule can be vital to the growth of Proteotronics.
蛋白质电子学是生物纳米电子学中一个不断发展的领域,利用特定的蛋白质正在制造具有独特性能的新型电子设备。此外,如果在不同的电极之间分析生物分子,就会揭示出有趣的性质。本研究论文采用非平衡格林函数密度泛函理论(NEGF-DFT)方法,使用自洽函数,研究了 L-天冬氨酸(即 L-氨基酸)与金、银、铜、铂和钯对称电极结合的电子输运性质。使用局域密度近似和广义梯度近似方法计算了不同电极的理论功函数。计算出的功函数与分子器件的空穴隧道势垒和电导很好地相关,这进一步验证了分子与电极之间的耦合强度。由于其不对称结构,考虑中的分子还表现出所有不同电极的负微分电阻区和整流比。使用铂电极的分子器件在有限偏压下表现出最高的峰值到谷值比为 1.38 和整流比为 3.20。不同分子器件的开关特性用详细的透射谱和 MPSH 进行了验证。这些结果表明,L-天冬氨酸和类似的生物分子对于 Proteotronics 的发展至关重要。