Suppr超能文献

一种新的加权平均小波变阈值去噪方法同时识别地下水污染源和含水层参数

Simultaneous identification of groundwater contamination source and aquifer parameters with a new weighted-average wavelet variable-threshold denoising method.

作者信息

Wang Han, Lu Wenxi, Chang Zhenbo

机构信息

Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Univ., Changchun, 130021, China.

Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin Univ., Changchun, 130021, China.

出版信息

Environ Sci Pollut Res Int. 2021 Jul;28(28):38292-38307. doi: 10.1007/s11356-021-12959-x. Epub 2021 Mar 17.

Abstract

This paper first proposed a parallel heuristic search strategy for simultaneous identification of groundwater contamination source and aquifer parameters. As identification results are influenced by many factors, such as noisy contamination concentration data, data denoising is necessary. The existing wavelet threshold denoising method has unavoidable shortcomings; therefore, this paper first proposed a new weighted-average wavelet variable-threshold denoising (WWVD) method to improve the denoising effect for concentration data, which further enhanced the subsequent identification accuracy. However, frequent calls to the simulation model could produce high computational cost during likelihood calculation. Hence, single surrogate model of the simulation model was developed to reduce cost; however, it presented limitation. Thus, this paper first developed a differential evolution-tabu search (DE-TS) hybrid algorithm to construct an optimal ensemble surrogate model, which assembled Gaussian process, kernel extreme learning machine, and support vector regression. The first proposed DE-TS algorithm also improved the approximation accuracy of surrogate model to simulation model. This paper first proposed and implemented a parallel heuristic search iterative process for simultaneous identification, and the identification results were obtained when the iteration process terminated. The accuracy and efficiency of these newly proposed approaches were tested through a hypothetical case. Results showed that the WWVD method not only improved the denoising effect for concentration data but also enhanced the subsequent identification accuracy. The OES model using DE-TS hybrid algorithm improved the approximation accuracy of surrogate model to simulation model, and the parallel heuristic search strategy is helpful for simultaneous identification of groundwater contamination source and aquifer parameters.

摘要

本文首次提出了一种用于同时识别地下水污染源和含水层参数的并行启发式搜索策略。由于识别结果受许多因素影响,如污染浓度数据存在噪声,因此有必要进行数据去噪。现有的小波阈值去噪方法存在不可避免的缺点;因此,本文首次提出了一种新的加权平均小波变阈值去噪(WWVD)方法来提高浓度数据的去噪效果,这进一步提高了后续的识别精度。然而,在似然计算过程中频繁调用模拟模型会产生较高的计算成本。因此,开发了模拟模型的单代理模型以降低成本;然而,它存在局限性。因此,本文首次开发了一种差分进化-禁忌搜索(DE-TS)混合算法来构建最优集成代理模型,该模型集成了高斯过程、核极限学习机和支持向量回归。首次提出的DE-TS算法还提高了代理模型对模拟模型的逼近精度。本文首次提出并实现了一种用于同时识别的并行启发式搜索迭代过程,并在迭代过程终止时获得识别结果。通过一个假设案例对这些新提出的方法的准确性和效率进行了测试。结果表明,WWVD方法不仅提高了浓度数据的去噪效果,还提高了后续的识别精度。使用DE-TS混合算法的OES模型提高了代理模型对模拟模型的逼近精度,并且并行启发式搜索策略有助于同时识别地下水污染源和含水层参数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验