Suppr超能文献

关系量子力学与PBR定理:和平共存

Relational Quantum Mechanics and the PBR Theorem: A Peaceful Coexistence.

作者信息

Oldofredi Andrea, Calosi Caludio

机构信息

Section de Philosophie, Université de Lausanne, Lausanne, Switzerland.

Section de Philosophie, Université de Geneve, Geneva, Switzerland.

出版信息

Found Phys. 2021;51(4):82. doi: 10.1007/s10701-021-00485-2. Epub 2021 Jul 31.

Abstract

According to Relational Quantum Mechanics (RQM) the wave function is considered neither a concrete physical item evolving in spacetime, nor an object representing the absolute state of a certain quantum system. In this interpretative framework, is defined as a computational device encoding observers' information; hence, RQM offers a somewhat epistemic view of the wave function. This perspective seems to be at odds with the PBR theorem, a formal result excluding that wave functions represent knowledge of an underlying reality described by some ontic state. In this paper we argue that RQM is not affected by the conclusions of PBR's argument; consequently, the alleged inconsistency can be dissolved. To do that, we will thoroughly discuss the very foundations of the PBR theorem, i.e. Harrigan and Spekkens' categorization of ontological models, showing that their implicit assumptions about the nature of the ontic state are incompatible with the main tenets of RQM. Then, we will ask whether it is possible to derive a PBR-type result, answering in the negative. This conclusion shows some limitations of this theorem not yet discussed in the literature.

摘要

根据关系量子力学(RQM),波函数既不被视为在时空中演化的具体物理实体,也不是代表某个量子系统绝对状态的对象。在这个解释框架中,波函数被定义为一种编码观察者信息的计算装置;因此,关系量子力学提供了一种关于波函数的认知观点。这种观点似乎与PBR定理相矛盾,PBR定理是一个形式结果,排除了波函数代表由某种本体状态描述的潜在现实的知识的可能性。在本文中,我们认为关系量子力学不受PBR论证结论的影响;因此,所谓的不一致性可以消除。为此,我们将深入讨论PBR定理的基础,即哈里根和斯佩肯斯对本体模型的分类,表明他们关于本体状态性质的隐含假设与关系量子力学的主要原则不相容。然后,我们将探讨是否有可能推导出一个PBR类型的结果,并给出否定的答案。这一结论揭示了该定理在文献中尚未讨论过的一些局限性。

相似文献

1
Relational Quantum Mechanics and the PBR Theorem: A Peaceful Coexistence.
Found Phys. 2021;51(4):82. doi: 10.1007/s10701-021-00485-2. Epub 2021 Jul 31.
2
On the Classification Between -Ontic and -Epistemic Ontological Models.
Found Phys. 2020;50(11):1315-1345. doi: 10.1007/s10701-020-00377-x. Epub 2020 Sep 5.
3
The Bundle Theory Approach to Relational Quantum Mechanics.
Found Phys. 2021;51(1):18. doi: 10.1007/s10701-021-00407-2. Epub 2021 Feb 18.
4
Relational Quantum Mechanics, quantum relativism, and the iteration of relativity.
Stud Hist Philos Sci. 2024 Apr;104:109-118. doi: 10.1016/j.shpsa.2024.02.007. Epub 2024 Mar 18.
6
Experimental test of the no-go theorem for continuous ψ-epistemic models.
Sci Rep. 2016 May 31;6:26519. doi: 10.1038/srep26519.
7
The wave function as a true ensemble.
Proc Math Phys Eng Sci. 2022 Jun;478(2262):20210705. doi: 10.1098/rspa.2021.0705. Epub 2022 Jun 22.
8
Quantum Reconstructions as Stepping Stones Toward Interpretations?
Found Phys. 2024;54(4):46. doi: 10.1007/s10701-024-00778-2. Epub 2024 Jul 3.
9
ψ-Epistemic models are exponentially bad at explaining the distinguishability of quantum states.
Phys Rev Lett. 2014 Apr 25;112(16):160404. doi: 10.1103/PhysRevLett.112.160404.
10
On the consistency of relative facts.
Eur J Philos Sci. 2023;13(4):55. doi: 10.1007/s13194-023-00551-8. Epub 2023 Nov 22.

本文引用的文献

1
The Bundle Theory Approach to Relational Quantum Mechanics.
Found Phys. 2021;51(1):18. doi: 10.1007/s10701-021-00407-2. Epub 2021 Feb 18.
2
On the Classification Between -Ontic and -Epistemic Ontological Models.
Found Phys. 2020;50(11):1315-1345. doi: 10.1007/s10701-020-00377-x. Epub 2020 Sep 5.
3
Quantum theory cannot consistently describe the use of itself.
Nat Commun. 2018 Sep 18;9(1):3711. doi: 10.1038/s41467-018-05739-8.
4
'Space is blue and birds fly through it'.
Philos Trans A Math Phys Eng Sci. 2018 Jul 13;376(2123). doi: 10.1098/rsta.2017.0312.
5
No-go theorem for the composition of quantum systems.
Phys Rev Lett. 2014 Feb 21;112(7):070407. doi: 10.1103/PhysRevLett.112.070407.
6
Distinct quantum states can be compatible with a single state of reality.
Phys Rev Lett. 2012 Oct 12;109(15):150404. doi: 10.1103/PhysRevLett.109.150404. Epub 2012 Oct 9.
7
Implications of the Pusey-Barrett-Rudolph quantum no-go theorem.
Phys Rev Lett. 2012 Jun 29;108(26):260404. doi: 10.1103/PhysRevLett.108.260404. Epub 2012 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验