Edelstein Center, Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
Department of Physics, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel.
Nat Commun. 2017 Nov 3;8(1):1306. doi: 10.1038/s41467-017-01375-w.
Where does quantum mechanics part ways with classical mechanics? How does quantum randomness differ fundamentally from classical randomness? We cannot fully explain how the theories differ until we can derive them within a single axiomatic framework, allowing an unambiguous account of how one theory is the limit of the other. Here we derive non-relativistic quantum mechanics and classical statistical mechanics within a common framework. The common axioms include conservation of average energy and conservation of probability current. But two axioms distinguish quantum mechanics from classical statistical mechanics: an "ontic extension" defines a nonseparable (global) random variable that generates physical correlations, and an "epistemic restriction" constrains allowed phase space distributions. The ontic extension and epistemic restriction, with strength on the order of Planck's constant, imply quantum entanglement and uncertainty relations. This framework suggests that the wave function is epistemic, yet it does not provide an ontic dynamics for individual systems.
量子力学在何处与经典力学分道扬镳?量子随机性与经典随机性在根本上有何不同?除非我们能够在单一公理框架内推导出这些理论,从而明确说明一个理论如何是另一个理论的极限,否则我们无法完全解释它们之间的区别。在这里,我们在一个共同的框架内推导出了非相对论量子力学和经典统计力学。共同的公理包括平均能量守恒和概率流守恒。但是,有两个公理将量子力学与经典统计力学区分开来:一个“本体论扩展”定义了一个非可分的(全局)随机变量,它产生物理相关性,另一个“认识论限制”限制了允许的相空间分布。本体论扩展和认识论限制,其强度与普朗克常数相当,意味着量子纠缠和不确定性关系。这个框架表明波函数是认识论的,但它并没有为单个系统提供本体论动力学。