Suppr超能文献

OptiDose:使用最优控制计算个体化最优给药方案

OptiDose: Computing the Individualized Optimal Drug Dosing Regimen Using Optimal Control.

作者信息

Bachmann Freya, Koch Gilbert, Pfister Marc, Szinnai Gabor, Schropp Johannes

机构信息

Department of Mathematics and Statistics, University of Konstanz, Konstanz, Germany.

Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel, University of Basel, Basel, Switzerland.

出版信息

J Optim Theory Appl. 2021;189(1):46-65. doi: 10.1007/s10957-021-01819-w. Epub 2021 Feb 24.

Abstract

Providing the optimal dosing strategy of a drug for an individual patient is an important task in pharmaceutical sciences and daily clinical application. We developed and validated an optimal dosing algorithm (OptiDose) that computes the optimal individualized dosing regimen for pharmacokinetic-pharmacodynamic models in substantially different scenarios with various routes of administration by solving an optimal control problem. The aim is to compute a control that brings the underlying system as closely as possible to a desired reference function by minimizing a cost functional. In pharmacokinetic-pharmacodynamic modeling, the controls are the administered doses and the reference function can be the disease progression. Drug administration at certain time points provides a finite number of discrete controls, the drug doses, determining the drug concentration and its effect on the disease progression. Consequently, rewriting the cost functional gives a finite-dimensional optimal control problem depending only on the doses. Adjoint techniques allow to compute the gradient of the cost functional efficiently. This admits to solve the optimal control problem with robust algorithms such as quasi-Newton methods from finite-dimensional optimization. OptiDose is applied to three relevant but substantially different pharmacokinetic-pharmacodynamic examples.

摘要

为个体患者提供药物的最佳给药策略是药学和日常临床应用中的一项重要任务。我们开发并验证了一种最佳给药算法(OptiDose),该算法通过解决最优控制问题,为具有不同给药途径的多种不同场景下的药代动力学-药效学模型计算最佳个体化给药方案。目的是通过最小化一个成本函数来计算一种控制,使基础系统尽可能接近期望的参考函数。在药代动力学-药效学建模中,控制量是给药剂量,参考函数可以是疾病进展情况。在特定时间点给药提供了有限数量的离散控制量,即药物剂量,这些剂量决定了药物浓度及其对疾病进展的影响。因此,重写成本函数会产生一个仅依赖于剂量的有限维最优控制问题。伴随技术允许有效地计算成本函数的梯度。这使得可以使用有限维优化中的鲁棒算法(如拟牛顿法)来解决最优控制问题。OptiDose应用于三个相关但有显著差异的药代动力学-药效学示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8d8/8550736/e0bfce2f1a80/10957_2021_1819_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验