Suppr超能文献

科洛姆博广义数的非阿基米德环中的上确界、下确界和超极限

Supremum, infimum and hyperlimits in the non-Archimedean ring of Colombeau generalized numbers.

作者信息

Mukhammadiev A, Tiwari D, Apaaboah G, Giordano P

机构信息

University of Vienna, Wien, Austria.

University Grenoble Alpes, Saint-Martin-d'Héres, France.

出版信息

Mon Hefte Math. 2021;196(1):163-190. doi: 10.1007/s00605-021-01590-0. Epub 2021 Jul 3.

Abstract

It is well-known that the notion of limit in the sharp topology of sequences of Colombeau generalized numbers does not generalize classical results. E.g. the sequence and a sequence converges and only if . This has several deep consequences, e.g. in the study of series, analytic generalized functions, or sigma-additivity and classical limit theorems in integration of generalized functions. The lacking of these results is also connected to the fact that is necessarily not a complete ordered set, e.g. the set of all the infinitesimals has neither supremum nor infimum. We present a solution of these problems with the introduction of the notions of hypernatural number, hypersequence, close supremum and infimum. In this way, we can generalize all the classical theorems for the hyperlimit of a hypersequence. The paper explores ideas that can be applied to other non-Archimedean settings.

摘要

众所周知,在科洛姆博广义数序列的锐拓扑中极限的概念并不能推广经典结果。例如,序列 以及序列 收敛当且仅当 。这有几个深刻的后果,例如在级数研究、解析广义函数、或广义函数积分中的西格玛可加性和经典极限定理方面。这些结果的缺失也与 必然不是一个完备有序集这一事实相关,例如所有无穷小量的集合既没有上确界也没有下确界。我们通过引入超自然数、超序列、闭上确界和闭下确界的概念来给出这些问题的一个解决方案。通过这种方式,我们可以推广关于超序列超极限的所有经典定理。本文探讨了可应用于其他非阿基米德情形的思想。

相似文献

3
Hyper-power series and generalized real analytic functions.超幂级数与广义实解析函数。
Mon Hefte Math. 2024;203(2):475-508. doi: 10.1007/s00605-023-01849-8. Epub 2023 Mar 29.
5
Colombeau products of distributions.广义函数的科洛姆博乘积
Springerplus. 2016 Nov 29;5(1):2042. doi: 10.1186/s40064-016-3742-8. eCollection 2016.
6
On localization for double Fourier series.关于二重傅里叶级数的定位
Proc Natl Acad Sci U S A. 1978 Feb;75(2):580-1. doi: 10.1073/pnas.75.2.580.
8
Colombeau algebras without asymptotics.无渐近性的科洛姆博代数
J Pseudodiffer Oper Appl. 2019;10(1):133-154. doi: 10.1007/s11868-017-0230-z. Epub 2017 Nov 23.
10
Infinitesimal Probabilities.极小概率
Br J Philos Sci. 2018 Jun;69(2):509-552. doi: 10.1093/bjps/axw013. Epub 2016 Aug 11.

引用本文的文献

1
Hyper-power series and generalized real analytic functions.超幂级数与广义实解析函数。
Mon Hefte Math. 2024;203(2):475-508. doi: 10.1007/s00605-023-01849-8. Epub 2023 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验