文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Optimized-Unet: Novel Algorithm for Parapapillary Atrophy Segmentation.

作者信息

Wan Cheng, Wu Jiasheng, Li Han, Yan Zhipeng, Wang Chenghu, Jiang Qin, Cao Guofan, Xu Yanwu, Yang Weihua

机构信息

College of Electronic and Information Engineering/College of Integrated Circuits, Nanjing University of Aeronautics and Astronautics, Nanjing, China.

School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China.

出版信息

Front Neurosci. 2021 Oct 13;15:758887. doi: 10.3389/fnins.2021.758887. eCollection 2021.


DOI:10.3389/fnins.2021.758887
PMID:34720868
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8550077/
Abstract

In recent years, an increasing number of people have myopia in China, especially the younger generation. Common myopia may develop into high myopia. High myopia causes visual impairment and blindness. Parapapillary atrophy (PPA) is a typical retinal pathology related to high myopia, which is also a basic clue for diagnosing high myopia. Therefore, accurate segmentation of the PPA is essential for high myopia diagnosis and treatment. In this study, we propose an optimized Unet (OT-Unet) to solve this important task. OT-Unet uses one of the pre-trained models: Visual Geometry Group (VGG), ResNet, and Res2Net, as a backbone and is combined with edge attention, parallel partial decoder, and reverse attention modules to improve the segmentation accuracy. In general, using the pre-trained models can improve the accuracy with fewer samples. The edge attention module extracts contour information, the parallel partial decoder module combines the multi-scale features, and the reverse attention module integrates high- and low-level features. We also propose an augmented loss function to increase the weight of complex pixels to enable the network to segment more complex lesion areas. Based on a dataset containing 360 images (Including 26 pictures provided by PALM), the proposed OT-Unet achieves a high AUC (Area Under Curve) of 0.9235, indicating a significant improvement over the original Unet (0.7917).

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459c/8550077/c5c18c84f308/fnins-15-758887-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459c/8550077/914b061502a1/fnins-15-758887-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459c/8550077/feba420837b8/fnins-15-758887-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459c/8550077/4818508528f1/fnins-15-758887-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459c/8550077/1bc2c9438b58/fnins-15-758887-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459c/8550077/337e3cf7145a/fnins-15-758887-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459c/8550077/b81e4bfde83f/fnins-15-758887-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459c/8550077/78419d6ee206/fnins-15-758887-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459c/8550077/b2f6e2ad4afe/fnins-15-758887-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459c/8550077/c5c18c84f308/fnins-15-758887-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459c/8550077/914b061502a1/fnins-15-758887-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459c/8550077/feba420837b8/fnins-15-758887-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459c/8550077/4818508528f1/fnins-15-758887-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459c/8550077/1bc2c9438b58/fnins-15-758887-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459c/8550077/337e3cf7145a/fnins-15-758887-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459c/8550077/b81e4bfde83f/fnins-15-758887-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459c/8550077/78419d6ee206/fnins-15-758887-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459c/8550077/b2f6e2ad4afe/fnins-15-758887-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/459c/8550077/c5c18c84f308/fnins-15-758887-g009.jpg

相似文献

[1]
Optimized-Unet: Novel Algorithm for Parapapillary Atrophy Segmentation.

Front Neurosci. 2021-10-13

[2]
A new segmentation algorithm for peripapillary atrophy and optic disk from ultra-widefield Photographs.

Comput Biol Med. 2024-4

[3]
AGs-Unet: Building Extraction Model for High Resolution Remote Sensing Images Based on Attention Gates U Network.

Sensors (Basel). 2022-4-11

[4]
Pathological myopia classification with simultaneous lesion segmentation using deep learning.

Comput Methods Programs Biomed. 2021-2

[5]
Automatic detection of parapapillary atrophy and its association with children myopia.

Comput Methods Programs Biomed. 2019-9-23

[6]
Balancing High-performance and Lightweight: HL-UNet for 3D Cardiac Medical Image Segmentation.

Acad Radiol. 2024-11

[7]
Brain tumor feature extraction and edge enhancement algorithm based on U-Net network.

Heliyon. 2023-11-21

[8]
ARA-net: an attention-aware retinal atrophy segmentation network coping with fundus images.

Front Neurosci. 2023-4-27

[9]
MFA-UNet: a vessel segmentation method based on multi-scale feature fusion and attention module.

Front Neurosci. 2023-11-21

[10]
A Medical Image Segmentation Method Based on Improved UNet 3+ Network.

Diagnostics (Basel). 2023-2-3

引用本文的文献

[1]
Artificial intelligence in pathologic myopia: a review of clinical research studies.

Front Med (Lausanne). 2025-4-23

[2]
Multi-label deep learning for comprehensive optic nerve head segmentation through data of fundus images.

Heliyon. 2024-9-1

[3]
Predicting brain age using Tri-UNet and various MRI scale features.

Sci Rep. 2024-6-14

[4]
ARA-net: an attention-aware retinal atrophy segmentation network coping with fundus images.

Front Neurosci. 2023-4-27

[5]
Measurement method of tear meniscus height based on deep learning.

Front Med (Lausanne). 2023-2-14

[6]
Systematic Bibliometric and Visualized Analysis of Research Hotspots and Trends on the Application of Artificial Intelligence in Ophthalmic Disease Diagnosis.

Front Pharmacol. 2022-6-8

[7]
MVI-Mind: A Novel Deep-Learning Strategy Using Computed Tomography (CT)-Based Radiomics for End-to-End High Efficiency Prediction of Microvascular Invasion in Hepatocellular Carcinoma.

Cancers (Basel). 2022-6-15

[8]
Emerging Trends and Research Foci in Artificial Intelligence for Retinal Diseases: Bibliometric and Visualization Study.

J Med Internet Res. 2022-6-14

本文引用的文献

[1]
Inf-Net: Automatic COVID-19 Lung Infection Segmentation From CT Images.

IEEE Trans Med Imaging. 2020-8

[2]
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.

Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018-9

[3]
Fused Sparse Network Learning for Longitudinal Analysis of Mild Cognitive Impairment.

IEEE Trans Cybern. 2021-1

[4]
Res2Net: A New Multi-Scale Backbone Architecture.

IEEE Trans Pattern Anal Mach Intell. 2021-2

[5]
CE-Net: Context Encoder Network for 2D Medical Image Segmentation.

IEEE Trans Med Imaging. 2019-3-7

[6]
The epidemics of myopia: Aetiology and prevention.

Prog Retin Eye Res. 2017-9-23

[7]
Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050.

Ophthalmology. 2016-2-11

[8]
The myopia boom.

Nature. 2015-3-19

[9]
Microstructure of parapapillary atrophy: beta zone and gamma zone.

Invest Ophthalmol Vis Sci. 2013-3-19

[10]
Myopia.

Lancet. 2012-5-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索