Suppr超能文献

人工智能在眼科疾病诊断中应用的研究热点与趋势的系统文献计量学及可视化分析

Systematic Bibliometric and Visualized Analysis of Research Hotspots and Trends on the Application of Artificial Intelligence in Ophthalmic Disease Diagnosis.

作者信息

Zhao Junqiang, Lu Yi, Zhu Shaojun, Li Keran, Jiang Qin, Yang Weihua

机构信息

Department of Nursing, Xinxiang Medical University, Xinxiang, China.

School of Information Engineering, Huzhou University, Huzhou, China.

出版信息

Front Pharmacol. 2022 Jun 8;13:930520. doi: 10.3389/fphar.2022.930520. eCollection 2022.

Abstract

Artificial intelligence (AI) has been used in the research of ophthalmic disease diagnosis, and it may have an impact on medical and ophthalmic practice in the future. This study explores the general application and research frontier of artificial intelligence in ophthalmic disease detection. Citation data were downloaded from the Web of Science Core Collection database to evaluate the extent of the application of Artificial intelligence in ophthalmic disease diagnosis in publications from 1 January 2012, to 31 December 2021. This information was analyzed using CiteSpace.5.8. R3 and Vosviewer. A total of 1,498 publications from 95 areas were examined, of which the United States was determined to be the most influential country in this research field. The largest cluster labeled "Brownian motion" was used prior to the application of AI for ophthalmic diagnosis from 2007 to 2017, and was an active topic during this period. The burst keywords in the period from 2020 to 2021 were system, disease, and model. The focus of artificial intelligence research in ophthalmic disease diagnosis has transitioned from the development of AI algorithms and the analysis of abnormal eye physiological structure to the investigation of more mature ophthalmic disease diagnosis systems. However, there is a need for further studies in ophthalmology and computer engineering.

摘要

人工智能(AI)已被用于眼科疾病诊断研究,并且它未来可能会对医学和眼科实践产生影响。本研究探讨了人工智能在眼科疾病检测中的一般应用和研究前沿。从科学引文索引核心合集数据库下载了文献数据,以评估2012年1月1日至2021年12月31日期间出版物中人工智能在眼科疾病诊断中的应用程度。使用CiteSpace.5.8.R3和Vosviewer对这些信息进行了分析。共审查了来自95个领域的1498篇出版物,其中美国被确定为该研究领域最具影响力的国家。最大的聚类标记为“布朗运动”,在2007年至2017年人工智能应用于眼科诊断之前被使用,并且在这一时期是一个活跃的主题。2020年至2021年期间的突发关键词是系统、疾病和模型。眼科疾病诊断中人工智能研究的重点已从人工智能算法的开发和眼部异常生理结构的分析,转向对更成熟的眼科疾病诊断系统的研究。然而,眼科和计算机工程领域仍需要进一步的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75d3/9214201/b827af884d00/fphar-13-930520-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验