Department of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, China.
Department of Nursing, Xinxiang Medical University, Xinxiang, Henan, China.
J Med Internet Res. 2022 Jun 14;24(6):e37532. doi: 10.2196/37532.
BACKGROUND: Patients with retinal diseases may exhibit serious complications that cause severe visual impairment owing to a lack of awareness of retinal diseases and limited medical resources. Understanding how artificial intelligence (AI) is used to make predictions and perform relevant analyses is a very active area of research on retinal diseases. In this study, the relevant Science Citation Index (SCI) literature on the AI of retinal diseases published from 2012 to 2021 was integrated and analyzed. OBJECTIVE: The aim of this study was to gain insights into the overall application of AI technology to the research of retinal diseases from set time and space dimensions. METHODS: Citation data downloaded from the Web of Science Core Collection database for AI in retinal disease publications from January 1, 2012, to December 31, 2021, were considered for this analysis. Information retrieval was analyzed using the online analysis platforms of literature metrology: Bibliometrc, CiteSpace V, and VOSviewer. RESULTS: A total of 197 institutions from 86 countries contributed to relevant publications; China had the largest number and researchers from University College London had the highest H-index. The reference clusters of SCI papers were clustered into 12 categories. "Deep learning" was the cluster with the widest range of cocited references. The burst keywords represented the research frontiers in 2018-2021, which were "eye disease" and "enhancement." CONCLUSIONS: This study provides a systematic analysis method on the literature regarding AI in retinal diseases. Bibliometric analysis enabled obtaining results that were objective and comprehensive. In the future, high-quality retinal image-forming AI technology with strong stability and clinical applicability will continue to be encouraged.
背景:由于对视网膜疾病认识不足和医疗资源有限,患者可能会出现严重并发症,导致严重视力损害。了解人工智能(AI)如何用于预测和进行相关分析是视网膜疾病研究中一个非常活跃的领域。在这项研究中,整合和分析了 2012 年至 2021 年发表的关于视网膜疾病人工智能的相关科学引文索引(SCI)文献。
目的:本研究旨在从设定的时间和空间维度深入了解 AI 技术在视网膜疾病研究中的整体应用。
方法:本分析考虑了从 2012 年 1 月 1 日至 2021 年 12 月 31 日从 Web of Science 核心合集数据库下载的关于 AI 在视网膜疾病出版物的引文数据。文献计量学的在线分析平台 Bibliometrc、CiteSpace V 和 VOSviewer 用于信息检索分析。
结果:来自 86 个国家的 197 个机构对相关出版物做出了贡献;中国的发文量最大,伦敦大学学院的研究人员的 H 指数最高。SCI 论文的参考文献聚类被聚类成 12 个类别。“深度学习”是被引文献范围最广的聚类。突发关键词代表了 2018-2021 年的研究前沿,分别是“眼部疾病”和“增强”。
结论:本研究提供了一种关于视网膜疾病中 AI 文献的系统分析方法。文献计量学分析得出的结果客观、全面。未来,将继续鼓励具有较强稳定性和临床适用性的高质量视网膜成像 AI 技术。
Front Biosci (Landmark Ed). 2022-8-31
Endocr Metab Immune Disord Drug Targets. 2024
Clin Exp Med. 2024-8-23
Front Public Health. 2023
Front Ophthalmol (Lausanne). 2025-5-19
Int J Ophthalmol. 2024-12-18
Med Biol Eng Comput. 2025-4
Int J Immunopathol Pharmacol. 2023
Taiwan J Ophthalmol. 2023-6-13
Front Med (Lausanne). 2022-1-12
Int J Ophthalmol. 2021-12-18
Front Med (Lausanne). 2021-11-25
Front Neurosci. 2021-10-13
Int J Ophthalmol. 2021-7-18