文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

视网膜疾病人工智能的新兴趋势和研究焦点:文献计量和可视化研究。

Emerging Trends and Research Foci in Artificial Intelligence for Retinal Diseases: Bibliometric and Visualization Study.

机构信息

Department of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, China.

Department of Nursing, Xinxiang Medical University, Xinxiang, Henan, China.

出版信息

J Med Internet Res. 2022 Jun 14;24(6):e37532. doi: 10.2196/37532.


DOI:10.2196/37532
PMID:35700021
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9240965/
Abstract

BACKGROUND: Patients with retinal diseases may exhibit serious complications that cause severe visual impairment owing to a lack of awareness of retinal diseases and limited medical resources. Understanding how artificial intelligence (AI) is used to make predictions and perform relevant analyses is a very active area of research on retinal diseases. In this study, the relevant Science Citation Index (SCI) literature on the AI of retinal diseases published from 2012 to 2021 was integrated and analyzed. OBJECTIVE: The aim of this study was to gain insights into the overall application of AI technology to the research of retinal diseases from set time and space dimensions. METHODS: Citation data downloaded from the Web of Science Core Collection database for AI in retinal disease publications from January 1, 2012, to December 31, 2021, were considered for this analysis. Information retrieval was analyzed using the online analysis platforms of literature metrology: Bibliometrc, CiteSpace V, and VOSviewer. RESULTS: A total of 197 institutions from 86 countries contributed to relevant publications; China had the largest number and researchers from University College London had the highest H-index. The reference clusters of SCI papers were clustered into 12 categories. "Deep learning" was the cluster with the widest range of cocited references. The burst keywords represented the research frontiers in 2018-2021, which were "eye disease" and "enhancement." CONCLUSIONS: This study provides a systematic analysis method on the literature regarding AI in retinal diseases. Bibliometric analysis enabled obtaining results that were objective and comprehensive. In the future, high-quality retinal image-forming AI technology with strong stability and clinical applicability will continue to be encouraged.

摘要

背景:由于对视网膜疾病认识不足和医疗资源有限,患者可能会出现严重并发症,导致严重视力损害。了解人工智能(AI)如何用于预测和进行相关分析是视网膜疾病研究中一个非常活跃的领域。在这项研究中,整合和分析了 2012 年至 2021 年发表的关于视网膜疾病人工智能的相关科学引文索引(SCI)文献。

目的:本研究旨在从设定的时间和空间维度深入了解 AI 技术在视网膜疾病研究中的整体应用。

方法:本分析考虑了从 2012 年 1 月 1 日至 2021 年 12 月 31 日从 Web of Science 核心合集数据库下载的关于 AI 在视网膜疾病出版物的引文数据。文献计量学的在线分析平台 Bibliometrc、CiteSpace V 和 VOSviewer 用于信息检索分析。

结果:来自 86 个国家的 197 个机构对相关出版物做出了贡献;中国的发文量最大,伦敦大学学院的研究人员的 H 指数最高。SCI 论文的参考文献聚类被聚类成 12 个类别。“深度学习”是被引文献范围最广的聚类。突发关键词代表了 2018-2021 年的研究前沿,分别是“眼部疾病”和“增强”。

结论:本研究提供了一种关于视网膜疾病中 AI 文献的系统分析方法。文献计量学分析得出的结果客观、全面。未来,将继续鼓励具有较强稳定性和临床适用性的高质量视网膜成像 AI 技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/9240965/f6ebfbd0b885/jmir_v24i6e37532_fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/9240965/d81f7ea16402/jmir_v24i6e37532_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/9240965/75af239bd497/jmir_v24i6e37532_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/9240965/d52e93ab782e/jmir_v24i6e37532_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/9240965/8a2d88747afb/jmir_v24i6e37532_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/9240965/46d65f2d09aa/jmir_v24i6e37532_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/9240965/506cebafbb45/jmir_v24i6e37532_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/9240965/cd1b77a3f231/jmir_v24i6e37532_fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/9240965/4f3ace2701ca/jmir_v24i6e37532_fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/9240965/884aa7b90f7c/jmir_v24i6e37532_fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/9240965/f6ebfbd0b885/jmir_v24i6e37532_fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/9240965/d81f7ea16402/jmir_v24i6e37532_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/9240965/75af239bd497/jmir_v24i6e37532_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/9240965/d52e93ab782e/jmir_v24i6e37532_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/9240965/8a2d88747afb/jmir_v24i6e37532_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/9240965/46d65f2d09aa/jmir_v24i6e37532_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/9240965/506cebafbb45/jmir_v24i6e37532_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/9240965/cd1b77a3f231/jmir_v24i6e37532_fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/9240965/4f3ace2701ca/jmir_v24i6e37532_fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/9240965/884aa7b90f7c/jmir_v24i6e37532_fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a5/9240965/f6ebfbd0b885/jmir_v24i6e37532_fig10.jpg

相似文献

[1]
Emerging Trends and Research Foci in Artificial Intelligence for Retinal Diseases: Bibliometric and Visualization Study.

J Med Internet Res. 2022-6-14

[2]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[3]
A bibliometric analysis of artificial intelligence applications in macular edema: exploring research hotspots and Frontiers.

Front Cell Dev Biol. 2023-5-15

[4]
Global research trends of artificial intelligence applied in esophageal carcinoma: A bibliometric analysis (2000-2022) CiteSpace and VOSviewer.

Front Oncol. 2022-8-25

[5]
Global research trends and foci of artificial intelligence-based tumor pathology: a scientometric study.

J Transl Med. 2022-9-6

[6]
The Application of Artificial Intelligence in Thyroid Nodules: A Systematic Review Based on Bibliometric Analysis.

Endocr Metab Immune Disord Drug Targets. 2024

[7]
Application of artificial intelligence in rheumatic disease: a bibliometric analysis.

Clin Exp Med. 2024-8-23

[8]
Medical Education and Artificial Intelligence: Web of Science-Based Bibliometric Analysis (2013-2022).

JMIR Med Educ. 2024-10-10

[9]
Systematic bibliometric and visualized analysis of research hotspots and trends in artificial intelligence in autism spectrum disorder.

Front Neuroinform. 2023-12-6

[10]
Global trends and performances in diabetic retinopathy studies: A bibliometric analysis.

Front Public Health. 2023

引用本文的文献

[1]
Synergistic AI-resident approach achieves superior diagnostic accuracy in tertiary ophthalmic care for glaucoma and retinal disease.

Front Ophthalmol (Lausanne). 2025-5-19

[2]
Application of Artificial Intelligence in Retinopathy of Prematurity From 2010 to 2023: A Bibliometric Analysis.

Health Sci Rep. 2025-4-18

[3]
Development and research status of intelligent ophthalmology in China.

Int J Ophthalmol. 2024-12-18

[4]
Pan-Ret: a semi-supervised framework for scalable detection of pan-retinal diseases.

Med Biol Eng Comput. 2025-4

[5]
Global research on wearable technology applications in healthcare: A data-driven bibliometric analysis.

Digit Health. 2024-9-26

[6]
Systematic bibliometric and visualized analysis of research hotspots and trends on the application of artificial intelligence in glaucoma from 2013 to 2022.

Int J Ophthalmol. 2024-9-18

[7]
Mapping the current trends of autophagy in retinal diseases: A bibliometric analysis.

Heliyon. 2024-5-29

[8]
Bibliometric and visual analyses of trends in the field of T cell exhaustion research: Findings from 2000 to 2022.

Int J Immunopathol Pharmacol. 2023

[9]
A bibliometric study and visualization analysis of ferroptosis-inducing cancer therapy.

Heliyon. 2023-9-9

[10]
The future application of artificial intelligence and telemedicine in the retina: A perspective.

Taiwan J Ophthalmol. 2023-6-13

本文引用的文献

[1]
Image enhancement of color fundus photographs for age-related macular degeneration: the Shanghai Changfeng Study.

Int J Ophthalmol. 2022-2-18

[2]
Teleophthalmology-enabled and artificial intelligence-ready referral pathway for community optometry referrals of retinal disease (HERMES): a Cluster Randomised Superiority Trial with a linked Diagnostic Accuracy Study-HERMES study report 1-study protocol.

BMJ Open. 2022-2-1

[3]
Retinal Image Enhancement Using Cycle-Constraint Adversarial Network.

Front Med (Lausanne). 2022-1-12

[4]
Artificial intelligence can assist with diagnosing retinal vein occlusion.

Int J Ophthalmol. 2021-12-18

[5]
Screening Referable Diabetic Retinopathy Using a Semi-automated Deep Learning Algorithm Assisted Approach.

Front Med (Lausanne). 2021-11-25

[6]
Optimized-Unet: Novel Algorithm for Parapapillary Atrophy Segmentation.

Front Neurosci. 2021-10-13

[7]
An Artificial Intelligent Risk Classification Method of High Myopia Based on Fundus Images.

J Clin Med. 2021-9-29

[8]
Research on the Segmentation of Biomarker for Chronic Central Serous Chorioretinopathy Based on Multimodal Fundus Image.

Dis Markers. 2021

[9]
EAD-Net: A Novel Lesion Segmentation Method in Diabetic Retinopathy Using Neural Networks.

Dis Markers. 2021

[10]
Prevalence and risk factors of diabetic retinopathy in patients with type 2 diabetes in Shanghai.

Int J Ophthalmol. 2021-7-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索