Kler Stanislav, Ma Manxiu, Narayan Sujatha, Ahrens Misha B, Pan Y Albert
Center for Neurobiology Research, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States.
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States.
Front Neuroanat. 2021 Oct 6;15:758350. doi: 10.3389/fnana.2021.758350. eCollection 2021.
The small size and translucency of larval zebrafish () have made it a unique experimental system to investigate whole-brain neural circuit structure and function. Still, the connectivity patterns between most neuronal types remain mostly unknown. This gap in knowledge underscores the critical need for effective neural circuit mapping tools, especially ones that can integrate structural and functional analyses. To address this, we previously developed a vesicular stomatitis virus (VSV) based approach called Tracer with Restricted Anterograde Spread (TRAS). TRAS utilizes lentivirus to complement replication-incompetent VSV (VSVΔG) to allow restricted (monosynaptic) anterograde labeling from projection neurons to their target cells in the brain. Here, we report the second generation of TRAS (TRAS-M51R), which utilizes a mutant variant of VSVΔG [VSV(M51R)ΔG] with reduced cytotoxicity. Within the primary visual pathway, we found that TRAS-M51R significantly improved long-term viability of transsynaptic labeling (compared to TRAS) while maintaining anterograde spread activity. By using Cre-expressing VSV(M51R)ΔG, TRAS-M51R could selectively label excitatory ( positive) and inhibitory ( positive) retinorecipient neurons. We further show that these labeled excitatory and inhibitory retinorecipient neurons retained neuronal excitability upon visual stimulation at 5-8 days post fertilization (2-5 days post-infection). Together, these findings show that TRAS-M51R is suitable for neural circuit studies that integrate structural connectivity, cell-type identity, and neurophysiology.
斑马鱼幼体的小尺寸和半透明性使其成为研究全脑神经回路结构和功能的独特实验系统。尽管如此,大多数神经元类型之间的连接模式仍大多未知。这一知识空白凸显了对有效神经回路映射工具的迫切需求,尤其是那些能够整合结构和功能分析的工具。为了解决这一问题,我们之前开发了一种基于水泡性口炎病毒(VSV)的方法,称为限制性顺行传播示踪法(TRAS)。TRAS利用慢病毒来补充复制缺陷型VSV(VSVΔG),以实现从投射神经元到其大脑中靶细胞的限制性(单突触)顺行标记。在此,我们报告了TRAS的第二代(TRAS-M51R),它利用了细胞毒性降低的VSVΔG突变体[VSV(M51R)ΔG]。在初级视觉通路中,我们发现TRAS-M51R显著提高了跨突触标记的长期存活率(与TRAS相比),同时保持了顺行传播活性。通过使用表达Cre的VSV(M51R)ΔG,TRAS-M51R可以选择性地标记兴奋性( 阳性)和抑制性( 阳性)视网膜接受神经元。我们进一步表明,这些标记的兴奋性和抑制性视网膜接受神经元在受精后5-8天(感染后2-5天)受到视觉刺激时保留了神经元兴奋性。总之,这些发现表明TRAS-M51R适用于整合结构连接性、细胞类型识别和神经生理学的神经回路研究。