Suppr超能文献

EMOCOV:利用新冠疫情推文进行情感检测、分析和可视化的机器学习

EMOCOV: Machine learning for emotion detection, analysis and visualization using COVID-19 tweets.

作者信息

Kabir Md Yasin, Madria Sanjay

机构信息

Department of Computer Science, Missouri University of Science and Technology, USA.

出版信息

Online Soc Netw Media. 2021 May;23:100135. doi: 10.1016/j.osnem.2021.100135. Epub 2021 May 16.

Abstract

The adversarial impact of the Covid-19 pandemic has created a health crisis globally all over the world. This unprecedented crisis forced people to lockdown and changed almost every aspect of the regular activities of the people. Thus, the pandemic is also impacting everyone physically, mentally, and economically, and it, therefore, is paramount to analyze and understand emotional responses during the crisis affecting mental health. Negative emotional responses at fine-grained labels like anger and fear during the crisis might also lead to irreversible socio-economic damages. In this work, we develop a neural network model and train it using manually labeled data to detect various emotions at fine-grained labels in the Covid-19 tweets automatically. We present a manually labeled tweets dataset on COVID-19 emotional responses along with regular tweets data. We created a custom Q&A roBERTa model to extract phrases from the tweets that are primarily responsible for the corresponding emotions. None of the existing datasets and work currently provide the selected words or phrases denoting the reason for the corresponding emotions. Our classification model outperforms other systems and achieves a Jaccard score of 0.6475 with an accuracy of 0.8951. The custom RoBERTa Q&A model outperforms other models by achieving a Jaccard score of 0.7865. Further, we present a historical emotion analysis using COVID-19 tweets over the USA including each state level analysis.

摘要

新冠疫情的对抗性影响在全球范围内引发了一场健康危机。这场前所未有的危机迫使人们进行封锁,并改变了人们日常活动的几乎每个方面。因此,疫情也在身体、心理和经济上影响着每个人,所以分析和理解危机期间影响心理健康的情绪反应至关重要。危机期间诸如愤怒和恐惧等细粒度标签下的负面情绪反应也可能导致不可逆转的社会经济损害。在这项工作中,我们开发了一个神经网络模型,并使用手动标注的数据对其进行训练,以自动检测新冠推文中细粒度标签下的各种情绪。我们展示了一个关于新冠情绪反应的手动标注推文数据集以及常规推文数据。我们创建了一个定制的问答式RoBERTa模型,以从推文中提取主要导致相应情绪的短语。现有的数据集和工作目前都没有提供表示相应情绪原因的所选单词或短语。我们的分类模型优于其他系统,杰卡德分数达到0.6475,准确率为0.8951。定制的RoBERTa问答模型以0.7865的杰卡德分数优于其他模型。此外,我们对美国各地包括每个州层面的新冠推文进行了历史情绪分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ece8/8542648/f89ea2df2877/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验