Suppr超能文献

通过眼动追踪和基于变换器的双向编码器表征的情感分析来理解消费者对人工智能艺术的认知与接受度。

Understanding consumer perception and acceptance of AI art through eye tracking and Bidirectional Encoder Representations from Transformers-based sentiment analysis.

作者信息

Yu Tao, Xu Junping, Pan Younghwan

机构信息

Department of Smart Experience Design Kookmin University, Seoul 02707, Republic of Korea.

出版信息

J Eye Mov Res. 2024 Dec 22;17(5). doi: 10.16910/jemr.17.5.3. eCollection 2024.

Abstract

This study investigates public perception and acceptance of AI-generated art using an integrated system that merges eye-tracking methodologies with advanced bidirectional encoder representations from transformers (BERT)-based sentiment analysis. Eye-tracking methods systematically document the visual trajectories and fixation spots of consumers viewing AI-generated artworks, elucidating the inherent relationship between visual activity and perception. Thereafter, the BERT-based sentiment analysis algorithm extracts emotional responses and aesthetic assessments from numerous internet reviews, offering a robust instrument for evaluating public approval and aesthetic perception. The findings indicate that consumer perception of AI-generated art is markedly affected by visual attention behavior, whereas sentiment analysis uncovers substantial disparities in aesthetic assessments. This paper introduces enhancements to the BERT model via domain-specific pre-training and hyperparameter optimization utilizing deep Gaussian processes and dynamic Bayesian optimization, resulting in substantial increases in classification accuracy and resilience. This study thoroughly examines the underlying mechanisms of public perception and assessment of AI-generated art, assesses the potential of these techniques for practical application in art creation and evaluation, and offers a novel perspective and scientific foundation for future research and application of AI art.

摘要

本研究使用一种集成系统来调查公众对人工智能生成艺术的认知和接受度,该系统将眼动追踪方法与基于变换器(BERT)的高级双向编码器表征的情感分析相结合。眼动追踪方法系统地记录了消费者观看人工智能生成艺术品时的视觉轨迹和注视点,阐明了视觉活动与认知之间的内在关系。此后,基于BERT的情感分析算法从大量网络评论中提取情感反应和审美评估,为评估公众认可度和审美认知提供了一个有力工具。研究结果表明,消费者对人工智能生成艺术的认知明显受到视觉注意力行为的影响,而情感分析揭示了审美评估方面的显著差异。本文通过利用深度高斯过程和动态贝叶斯优化进行特定领域的预训练和超参数优化,对BERT模型进行了改进,从而大幅提高了分类准确率和稳健性。本研究深入探讨了公众对人工智能生成艺术的认知和评估的潜在机制,评估了这些技术在艺术创作和评估中的实际应用潜力,并为人工智能艺术的未来研究和应用提供了新的视角和科学依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8db3/11787909/8c1ec0b657c8/jemr-17-05-c-figure-01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验