Suppr超能文献

自动驾驶的视觉评估。

Visual Evaluation for Autonomous Driving.

出版信息

IEEE Trans Vis Comput Graph. 2022 Jan;28(1):1030-1039. doi: 10.1109/TVCG.2021.3114777. Epub 2021 Dec 28.

Abstract

Autonomous driving technologies often use state-of-the-art artificial intelligence algorithms to understand the relationship between the vehicle and the external environment, to predict the changes of the environment, and then to plan and control the behaviors of the vehicle accordingly. The complexity of such technologies makes it challenging to evaluate the performance of autonomous driving systems and to find ways to improve them. The current approaches to evaluating such autonomous driving systems largely use a single score to indicate the overall performance of a system, but domain experts have difficulties in understanding how individual components or algorithms in an autonomous driving system may contribute to the score. To address this problem, we collaborate with domain experts on autonomous driving algorithms, and propose a visual evaluation method for autonomous driving. Our method considers the data generated in all components during the whole process of autonomous driving, including perception results, planning routes, prediction of obstacles, various controlling parameters, and evaluation of comfort. We develop a visual analytics workflow to integrate an evaluation mathematical model with adjustable parameters, support the evaluation of the system from the level of the overall performance to the level of detailed measures of individual components, and to show both evaluation scores and their contributing factors. Our implemented visual analytics system provides an overview evaluation score at the beginning and shows the animation of the dynamic change of the scores at each period. Experts can interactively explore the specific component at different time periods and identify related factors. With our method, domain experts not only learn about the performance of an autonomous driving system, but also identify and access the problematic parts of each component. Our visual evaluation system can be applied to the autonomous driving simulation system and used for various evaluation cases. The results of using our system in some simulation cases and the feedback from involved domain experts confirm the usefulness and efficiency of our method in helping people gain in-depth insight into autonomous driving systems.

摘要

自动驾驶技术通常使用最先进的人工智能算法来理解车辆与外部环境之间的关系,预测环境的变化,然后相应地规划和控制车辆的行为。这些技术的复杂性使得评估自动驾驶系统的性能并找到改进方法具有挑战性。目前评估此类自动驾驶系统的方法主要使用单个分数来表示系统的整体性能,但领域专家很难理解自动驾驶系统中的单个组件或算法如何对分数产生影响。为了解决这个问题,我们与自动驾驶算法领域的专家合作,提出了一种自动驾驶的可视化评估方法。我们的方法考虑了自动驾驶过程中所有组件生成的数据,包括感知结果、规划路线、障碍物预测、各种控制参数以及舒适度评估。我们开发了一个可视化分析工作流程,将可调节参数的评估数学模型集成在一起,支持从系统整体性能到各个组件详细措施的评估,并同时显示评估分数及其影响因素。我们实现的可视化分析系统在开始时提供了一个总体评估分数,并显示每个时间段分数动态变化的动画。专家可以交互地探索不同时间段的特定组件,并识别相关因素。通过我们的方法,领域专家不仅可以了解自动驾驶系统的性能,还可以识别和访问每个组件的问题部分。我们的可视化评估系统可以应用于自动驾驶仿真系统,并用于各种评估案例。在一些仿真案例中使用我们的系统的结果以及相关领域专家的反馈证实了我们的方法在帮助人们深入了解自动驾驶系统方面的有用性和效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验