Routray Sudhir K
IEEE Comput Graph Appl. 2024 May-Jun;44(3):43-53. doi: 10.1109/MCG.2024.3381450. Epub 2024 Jun 21.
Autonomous driving is no longer a topic of science fiction. Advancements of autonomous driving technologies are now reliable. Effectively harnessing the information is essential for enhancing the safety, reliability, and efficiency of autonomous vehicles. In this article, we explore the pivotal role of visualization and visual analytics (VA) techniques used in autonomous driving. By employing sophisticated data visualization methods, VA, researchers, and practitioners transform intricate datasets into intuitive visual representations, providing valuable insights for decision-making processes. This article delves into various visualization approaches, including spatial-temporal mapping, interactive dashboards, and machine learning-driven analytics, tailored specifically for autonomous driving scenarios. Furthermore, it investigates the integration of real-time sensor data, sensor coordination with VA, and machine learning algorithms to create comprehensive visualizations. This research advocates for the pivotal role of visualization and VA in shaping the future of autonomous driving systems, fostering innovation, and ensuring the safe integration of self-driving vehicles.
自动驾驶不再是科幻小说的话题。如今,自动驾驶技术的进步是可靠的。有效利用这些信息对于提高自动驾驶车辆的安全性、可靠性和效率至关重要。在本文中,我们探讨了可视化和视觉分析(VA)技术在自动驾驶中所起的关键作用。通过采用复杂的数据可视化方法、VA,研究人员和从业者将复杂的数据集转化为直观的视觉表示,为决策过程提供有价值的见解。本文深入探讨了各种可视化方法,包括时空映射、交互式仪表板以及专门为自动驾驶场景量身定制的机器学习驱动分析。此外,还研究了实时传感器数据的集成、传感器与VA的协调以及机器学习算法,以创建全面的可视化。这项研究倡导可视化和VA在塑造自动驾驶系统的未来、促进创新以及确保自动驾驶车辆的安全集成方面的关键作用。