Suppr超能文献

结合CCSD(T)方法运用扩展库普曼定理进行垂直电子亲和能的前沿计算。

State-Of-The-Art Computations of Vertical Electron Affinities with the Extended Koopmans' Theorem Integrated with the CCSD(T) Method.

作者信息

Ermiş Betül, Ekinci Emel, Bozkaya Uğur

机构信息

Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.

出版信息

J Chem Theory Comput. 2021 Dec 14;17(12):7648-7656. doi: 10.1021/acs.jctc.1c00938. Epub 2021 Nov 2.

Abstract

Accurate computation of electron affinities (EAs), within 0.10 eV, is one of the most challenging problems in modern computational quantum chemistry. The extended Koopmans' theorem (EKT) enables direct computations of electron affinities (EAs) from any level of the theory. In this research, the EKT approach based on the coupled-cluster singles and doubles with perturbative triples [CCSD(T)] method is applied to computations of EAs for the first time. For efficiency, the density-fitting (DF) technique is used for two-electron integrals. Further, the EKT-CCSD(T) method is applied to three test sets of atoms and closed- and open-shell molecules, denoted A16, C10, and O33, respectively, for comparison with the experimental electron affinities. For the A16, C10, and O33 sets, the EKT-CCSD(T) approach, along with the aug-cc-pV5Z basis set, provide mean absolute errors (MAEs) of 0.05, 0.08, and 0.09 eV, respectively. Hence, our results demonstrate that high-accuracy computations of EAs can be achieved with the EKT-CCSD(T) approach. Further, when the EKT-CCSD(T) approach is not computationally affordable, the EKT-MP2.5, EKT-LCCD, and EKT-CCSD methods can be considered, and their results are also reasonably accurate. The huge advantage of the EKT method for the computation of IPs is that it comes for free in an analytic gradient computation. Hence, one needs neither separate computations for neutral and ionic species, as in the case of common approaches, nor additional efforts to obtain IPs, as in the case of equation-of-motion approaches. Overall, we believe that the present research may open new avenues in EA computations.

摘要

在现代计算量子化学中,精确计算电子亲和能(EA),误差在0.10电子伏特以内,是最具挑战性的问题之一。扩展库普曼定理(EKT)能够从任何理论水平直接计算电子亲和能(EA)。在本研究中,基于耦合簇单双激发微扰三激发[CCSD(T)]方法的EKT方法首次应用于EA的计算。为了提高效率,采用密度拟合(DF)技术处理双电子积分。此外,EKT-CCSD(T)方法分别应用于三个原子、闭壳层分子和开壳层分子的测试集,分别记为A16、C10和O33,以与实验电子亲和能进行比较。对于A16、C10和O33集,EKT-CCSD(T)方法与aug-cc-pV5Z基组一起,分别提供了0.05、0.08和0.09电子伏特的平均绝对误差(MAE)。因此,我们的结果表明,使用EKT-CCSD(T)方法可以实现EA的高精度计算。此外,当EKT-CCSD(T)方法在计算上不可行时,可以考虑EKT-MP2.5、EKT-LCCD和EKT-CCSD方法,它们的结果也相当准确。EKT方法在计算电离势(IP)方面的巨大优势在于,它在解析梯度计算中是免费的。因此,既不需要像常见方法那样对中性和离子物种进行单独计算,也不需要像运动方程方法那样额外努力来获得IP。总体而言,我们相信本研究可能为EA计算开辟新的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验