Suppr超能文献

穿戴式机器人辅助步行训练 880 步:运动适应的初步研究。

Learning to walk with a wearable robot in 880 simple steps: a pilot study on motor adaptation.

机构信息

Sensory-Motor Systems (SMS) Lab, Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland.

Spinal Cord Injury Center, Medical Faculty, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.

出版信息

J Neuroeng Rehabil. 2021 Nov 1;18(1):157. doi: 10.1186/s12984-021-00946-9.

Abstract

BACKGROUND

Wearable robots have been shown to improve the efficiency of walking in diverse scenarios. However, it is unclear how much practice is needed to fully adapt to robotic assistance, and which neuromotor processes underly this adaptation. Familiarization strategies for novice users, robotic optimization techniques (e.g. human-in-the-loop), and meaningful comparative assessments depend on this understanding.

METHODS

To better understand the process of motor adaptation to robotic assistance, we analyzed the energy expenditure, gait kinematics, stride times, and muscle activities of eight naïve unimpaired participants across three 20-min sessions of robot-assisted walking. Experimental outcomes were analyzed with linear mixed effect models and statistical parametric mapping techniques.

RESULTS

Most of the participants' kinematic and muscular adaptation occurred within the first minute of assisted walking. After ten minutes, or 880 steps, the energetic benefits of assistance were realized (an average of 5.1% (SD 2.4%) reduction in energy expenditure compared to unassisted walking). Motor adaptation was likely driven by the formation of an internal model for feedforward motor control as evidenced by the reduction of burst-like muscle activity at the cyclic end of robotic assistance and an increase in arm-swing asymmetry previously associated with increased cognitive load.

CONCLUSION

Humans appear to adapt to walking assistance from a wearable robot over 880 steps by forming an internal model for feedforward control. The observed adaptation to the wearable robot is well-described by existing three-stage models that start from a cognitive stage, continue with an associative stage, and end in autonomous task execution. Trial registration Not applicable.

摘要

背景

可穿戴机器人已被证明可以提高在各种场景下的步行效率。然而,目前尚不清楚需要多少练习才能完全适应机器人辅助,以及哪些神经运动过程是这种适应的基础。新手用户的熟悉化策略、机器人优化技术(例如人机交互)以及有意义的比较评估都依赖于对这一过程的理解。

方法

为了更好地理解适应机器人辅助的运动过程,我们分析了 8 名未经训练的非损伤参与者在三次 20 分钟的机器人辅助行走过程中的能量消耗、步态运动学、步时和肌肉活动。使用线性混合效应模型和统计参数映射技术分析实验结果。

结果

大多数参与者的运动学和肌肉适应性在辅助行走的最初一分钟内发生。经过十分钟,即 880 步,辅助行走的能量效益得到了实现(与未辅助行走相比,能量消耗平均降低了 5.1%(SD 2.4%))。辅助运动的形成可能是由前馈运动控制的内部模型形成驱动的,这表现为在机器人辅助的循环结束时,爆发式肌肉活动减少,以及与认知负荷增加相关的手臂摆动不对称性增加。

结论

人类似乎通过形成前馈控制的内部模型,在经过 880 多步后适应可穿戴机器人的辅助。所观察到的对可穿戴机器人的适应很好地描述了现有的三阶段模型,该模型从认知阶段开始,继续到联想阶段,最后到自主任务执行。

试验注册 不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccdb/8561899/93df6a60e0a2/12984_2021_946_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验