Integrated Genetics and Genomics Graduate Group, University of California, Davis, CA, 95616.
Department of Biochemistry and Molecular Medicine, MIND Institute, University of California, Davis, CA, 95616.
eNeuro. 2021 Nov 30;8(6). doi: 10.1523/ENEURO.0185-21.2021. Print 2021 Nov-Dec.
Tracking and quantifying the abundance and location of cells in the developing brain is essential in neuroscience research, enabling a greater understanding of mechanisms underlying nervous system morphogenesis. Widely used experimental methods to quantify cells labeled with fluorescent markers, such as immunohistochemistry (IHC), hybridization, and expression of transgenes via stable lines or transient electroporations (IUEs), depend on accurate and consistent quantification of images. Current methods to quantify fluorescently-labeled cells rely on labor-intensive manual counting approaches, such as the Fiji plugin , which requires custom macros to enable higher-throughput analyses. Here, we present RapID Cell Counter, a semi-automated cell-counting tool with an easy-to-implement graphical user interface (GUI), which facilitates quick and consistent quantifications of cell density within user-defined boundaries that can be divided into equally-partitioned segments. Compared with the standard manual counting approach, we show that RapID matched accuracy and consistency and only required ∼10% of user time relative to manual counting methods, when quantifying the distribution of fluorescently-labeled neurons in mouse IUE experiments. Using RapID, we recapitulated previously published work focusing on two genes, and , important for projection neuron (PN) migration in the neocortex and used it to quantify PN displacement in a mouse knock-out model of Moreover, RapID is capable of quantifying other cell types in the brain with complex cell morphologies, including astrocytes and dopaminergic neurons. We propose RapID as an efficient method for neuroscience researchers to process fluorescently-labeled brain images in a consistent, accurate, and mid-throughput manner.
追踪和量化发育中大脑细胞的丰度和位置在神经科学研究中至关重要,能够深入了解神经系统形态发生的机制。广泛用于量化荧光标记细胞的实验方法,如免疫组织化学(IHC)、杂交和通过稳定系或瞬时电穿孔(IUE)表达转基因,依赖于对图像的准确和一致的量化。目前量化荧光标记细胞的方法依赖于劳动密集型的手动计数方法,例如 Fiji 插件,它需要自定义宏来实现更高通量的分析。在这里,我们提出了 RapID Cell Counter,这是一种具有易于实现的图形用户界面(GUI)的半自动细胞计数工具,它可以快速、一致地对用户定义的边界内的细胞密度进行量化,并且可以将这些边界划分为等分区段。与标准的手动计数方法相比,我们表明 RapID 在量化 IUE 实验中荧光标记神经元的分布时具有与手动计数方法相同的准确性和一致性,并且相对于手动计数方法,仅需要用户大约 10%的时间。使用 RapID,我们重现了之前发表的关于两个基因和的工作,这些基因对于大脑皮层中的投射神经元(PN)迁移很重要,并使用它来量化小鼠敲除模型中的 PN 位移。此外,RapID 能够量化大脑中具有复杂细胞形态的其他细胞类型,包括星形胶质细胞和多巴胺能神经元。我们提出 RapID 作为一种有效的方法,供神经科学研究人员以一致、准确和中通量的方式处理荧光标记的大脑图像。