Suppr超能文献

基于计算机视觉的工作流程反馈的中心静脉导管插入术培训系统。

System for Central Venous Catheterization Training Using Computer Vision-Based Workflow Feedback.

出版信息

IEEE Trans Biomed Eng. 2022 May;69(5):1630-1638. doi: 10.1109/TBME.2021.3124422. Epub 2022 Apr 21.

Abstract

OBJECTIVE

To develop a system for training central venous catheterization that does not require an expert observer. We propose a training system that uses video-based workflow recognition and electromagnetic tracking to provide trainees with real-time instruction and feedback.

METHODS

The system provides trainees with prompts about upcoming tasks and visual cues about workflow errors. Most tasks are recognized from a webcam video using a combination of a convolutional neural network and a recurrent neural network. We evaluated the system's ability to recognize tasks in the workflow by computing the percent of tasks that were recognized and the average signed transitional delay between the system and reviewers. We also evaluated the usability of the system using a participant questionnaire.

RESULTS

The system was able to recognize 86.2% of tasks in the workflow. The average signed transitional delay was -0.7s. The average usability score on the questionnaire was 4.7 out of 5 for the system overall. The participants found the interactive task list to be the most useful component of the system with an average score of 4.8 out of 5.

CONCLUSION

Overall, the participants' response to the system was positive. Participants perceived that the system would be useful for central venous catheterization training. Our system provides trainees with meaningful instruction and feedback without needing an expert observer to be present.

SIGNIFICANCE

We are able to provide trainees with more opportunities to access instruction and meaningful feedback by using workflow recognition.

摘要

目的

开发一种不需要专家观察员的中心静脉置管培训系统。我们提出了一种使用基于视频的工作流程识别和电磁跟踪的培训系统,为学员提供实时指导和反馈。

方法

该系统为学员提供有关即将到来的任务的提示以及有关工作流程错误的视觉提示。大多数任务是使用卷积神经网络和循环神经网络的组合从网络摄像头视频中识别的。我们通过计算被识别的任务的百分比以及系统和审阅者之间的平均符号过渡延迟,来评估系统识别工作流程中任务的能力。我们还使用参与者问卷评估了系统的可用性。

结果

系统能够识别工作流程中 86.2%的任务。平均符号过渡延迟为-0.7s。参与者对系统的总体平均可用性评分为 4.7 分(满分 5 分)。参与者认为交互式任务列表是系统最有用的组件,平均得分为 4.8 分(满分 5 分)。

结论

总的来说,参与者对系统的反应是积极的。参与者认为该系统将有助于中心静脉置管培训。我们的系统通过使用工作流程识别为学员提供了更多获得指导和有意义反馈的机会,而无需专家观察员在场。

意义

我们能够通过使用工作流程识别为学员提供更多的机会获得指导和有意义的反馈。

相似文献

1
System for Central Venous Catheterization Training Using Computer Vision-Based Workflow Feedback.
IEEE Trans Biomed Eng. 2022 May;69(5):1630-1638. doi: 10.1109/TBME.2021.3124422. Epub 2022 Apr 21.
2
Ultrasound Probe Pose Classification for Task Recognition in Central Venous Catheterization.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:5023-5026. doi: 10.1109/EMBC46164.2021.9630033.
3
Knowledge representation and learning of operator clinical workflow from full-length routine fetal ultrasound scan videos.
Med Image Anal. 2021 Apr;69:101973. doi: 10.1016/j.media.2021.101973. Epub 2021 Jan 23.
4
Automated laparoscopic colorectal surgery workflow recognition using artificial intelligence: Experimental research.
Int J Surg. 2020 Jul;79:88-94. doi: 10.1016/j.ijsu.2020.05.015. Epub 2020 May 12.
5
MIcro-surgical anastomose workflow recognition challenge report.
Comput Methods Programs Biomed. 2021 Nov;212:106452. doi: 10.1016/j.cmpb.2021.106452. Epub 2021 Oct 10.
6
Feasibility of real-time workflow segmentation for tracked needle interventions.
IEEE Trans Biomed Eng. 2014 Jun;61(6):1720-8. doi: 10.1109/TBME.2014.2301635.
8
Surgical workflow recognition with temporal convolution and transformer for action segmentation.
Int J Comput Assist Radiol Surg. 2023 Apr;18(4):785-794. doi: 10.1007/s11548-022-02811-z. Epub 2022 Dec 21.
9
Evaluating Surgical Resident Needle Insertion Skill Gains in Central Venous Catheterization Training.
J Surg Res. 2019 Jan;233:351-359. doi: 10.1016/j.jss.2018.07.040. Epub 2018 Sep 8.
10
LRTD: long-range temporal dependency based active learning for surgical workflow recognition.
Int J Comput Assist Radiol Surg. 2020 Sep;15(9):1573-1584. doi: 10.1007/s11548-020-02198-9. Epub 2020 Jun 25.

引用本文的文献

1
A Symbolic AI Approach to Medical Training.
J Med Syst. 2025 Jan 9;49(1):2. doi: 10.1007/s10916-024-02139-y.

本文引用的文献

1
RSDNet: Learning to Predict Remaining Surgery Duration from Laparoscopic Videos Without Manual Annotations.
IEEE Trans Med Imaging. 2019 Apr;38(4):1069-1078. doi: 10.1109/TMI.2018.2878055. Epub 2018 Oct 25.
2
SV-RCNet: Workflow Recognition From Surgical Videos Using Recurrent Convolutional Network.
IEEE Trans Med Imaging. 2018 May;37(5):1114-1126. doi: 10.1109/TMI.2017.2787657.
3
Using simulation for teaching femoral arterial access: A multicentric collaboration.
Catheter Cardiovasc Interv. 2016 Feb 15;87(3):376-80. doi: 10.1002/ccd.26256. Epub 2015 Oct 22.
4
Survey of Residents' Attitudes and Awareness Toward Teaching and Student Feedback.
J Grad Med Educ. 2014 Dec;6(4):698-703. doi: 10.4300/JGME-D-14-00221.1.
5
Resident teachers and feedback: time to raise the bar.
J Grad Med Educ. 2014 Dec;6(4):781-2. doi: 10.4300/JGME-D-14-00493.1.
6
PLUS: open-source toolkit for ultrasound-guided intervention systems.
IEEE Trans Biomed Eng. 2014 Oct;61(10):2527-37. doi: 10.1109/TBME.2014.2322864. Epub 2014 May 9.
7
Computer-based virtual reality colonoscopy simulation improves patient-based colonoscopy performance.
Can J Gastroenterol Hepatol. 2014 Apr;28(4):203-6. doi: 10.1155/2014/804367.
8
Perk Tutor: an open-source training platform for ultrasound-guided needle insertions.
IEEE Trans Biomed Eng. 2012 Dec;59(12):3475-81. doi: 10.1109/TBME.2012.2219307. Epub 2012 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验