Suppr超能文献

一种用于医学培训的符号人工智能方法。

A Symbolic AI Approach to Medical Training.

作者信息

Bottrighi Alessio, Grosso Federica, Ghiglione Marco, Maconi Antonio, Nera Stefano, Piovesan Luca, Raina Erica, Roveta Annalisa, Terenziani Paolo

机构信息

Computer Science Institute, DISIT, University of Eastern Piedmont, Alessandria, Italy.

Integrated Laboratory of AI and Medical Informatics, DAIRI - SS. Antonio e Biagio e Cesare Arrigo Hospital, DISIT - University of Eastern Piedmont, Alessandria, Italy.

出版信息

J Med Syst. 2025 Jan 9;49(1):2. doi: 10.1007/s10916-024-02139-y.

Abstract

In traditional medical education, learners are mostly trained to diagnose and treat patients through supervised practice. Artificial Intelligence and simulation techniques can complement such an educational practice. In this paper, we present GLARE-Edu, an innovative system in which AI knowledge-based methodologies and simulation are exploited to train learners "how to act" on patients based on the evidence-based best practices provided by clinical practice guidelines. GLARE-Edu is being developed by a multi-disciplinary team involving physicians and AI experts, within the AI-LEAP (LEArning Personalization of AI and with AI) Italian project. GLARE-Edu is domain-independent: it supports the acquisition of clinical guidelines and case studies in a computer format. Based on acquired guidelines (and case studies), it provides a series of educational facilities: (i) navigation, to navigate the structured representation of the guidelines provided by GLARE-Edu, (ii) automated simulation, to show learners how a guideline would suggest to act, step-by-step, on a specific case, and (iii) (self)verification, asking learners how they would treat a case, and comparing step-by-step the learner's proposal with the suggestions of the proper guideline. In this paper, we describe GLARE-Edu architecture and general features, and we demonstrate our approach through a concrete application to the melanoma guideline and we propose a preliminary evaluation.

摘要

在传统医学教育中,学习者大多通过监督实践来接受诊断和治疗患者的培训。人工智能和模拟技术可以补充这种教育实践。在本文中,我们介绍了GLARE-Edu,这是一个创新系统,其中利用基于人工智能知识的方法和模拟,根据临床实践指南提供的循证最佳实践,培训学习者如何对患者采取行动。GLARE-Edu由一个包括医生和人工智能专家的多学科团队在意大利的AI-LEAP(人工智能学习个性化)项目中开发。GLARE-Edu与领域无关:它支持以计算机格式获取临床指南和案例研究。基于获取的指南(和案例研究),它提供了一系列教育设施:(i)导航,用于浏览GLARE-Edu提供的指南的结构化表示;(ii)自动模拟,向学习者展示指南将如何针对特定案例逐步建议采取行动;以及(iii)(自我)验证,询问学习者将如何治疗案例,并将学习者的建议与适当指南的建议逐步进行比较。在本文中,我们描述了GLARE-Edu的架构和一般特征,并通过对黑色素瘤指南的具体应用展示了我们的方法,并提出了初步评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2881/11717836/d612d6088347/10916_2024_2139_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验