Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
Int J Biol Macromol. 2021 Dec 15;193(Pt A):1009-1020. doi: 10.1016/j.ijbiomac.2021.10.195. Epub 2021 Oct 30.
Protein corona (PC) formation remains a major hurdle in the successful delivery of nanomedicines to the target sites. Interacting proteins have been reported to undergo structural changes on the nanoparticle (NP) surface which invariably impacts their biological activities. Such structural changes are the result of opening of more binding sites of proteins to adsorb on the NP surface. The process of conversion of α-helix proteins to their β-sheet enriched counterpart is termed as amyloidosis and in case of PC formation, NPs apparently play the crucial role of being the nucleation centres where this process takes place. Conversely, increasing numbers of artificial nano-chaperones are being used to treat the protein misfolding disorders. Anti-amyloidogenic nanomaterials (NM) have been gaining utmost importance in inhibiting Aβ42 (hallmark peptide for Alzheimer's disease) and Hen egg white lysozyme (HEWL, model protein for systemic amyloidosis) aggregation. Interestingly, in this process, NPs inhibit protein β-sheet enrichment. These two seemingly opposite roles of NPs, propelling confirmatory change onto the smorgasbord of adsorbed native proteins and the ability of NPs in inhibiting amyloidosis creates a paradox, which has not been discussed earlier. Here, we highlight the key points from both the facets of the NP behaviour with respect to their physicochemical properties and the nature of proteins they adsorb onto them to unravel the mystery. BRIEF: Protein corona formation remains a major hurdle in achieving the desired efficacy of nanomedicine. Proteins when interact with nanoparticle (NP) surface, undergo both structural and biological changes. Again, NPs are known to exhibit anti-amyloidogenic behaviour where these play the crucial role of preventing any change in their native structure. Such seemingly different roles of NPs need sincere inquisition.
蛋白质冠(PC)的形成仍然是将纳米药物成功递送到靶部位的主要障碍。据报道,相互作用的蛋白质在纳米颗粒(NP)表面会发生结构变化,这不可避免地会影响它们的生物活性。这种结构变化是由于蛋白质的更多结合位点打开,从而吸附在 NP 表面上。将α-螺旋蛋白质转化为富含β-折叠的蛋白质的过程称为淀粉样变性,在 PC 形成的情况下,NP 显然起着作为发生该过程的成核中心的关键作用。相反,越来越多的人工纳米伴侣被用于治疗蛋白质错误折叠疾病。抗淀粉样变纳米材料(NM)在抑制 Aβ42(阿尔茨海默病的标志性肽)和鸡卵清溶菌酶(HEWL,系统性淀粉样变性的模型蛋白)聚集方面变得至关重要。有趣的是,在这个过程中,NP 抑制了蛋白质β-折叠的富集。NP 具有这两个看似相反的作用,一方面促使吸附的天然蛋白质发生构象确认性变化,另一方面 NP 具有抑制淀粉样变性的能力,这两者之间存在矛盾,但尚未进行讨论。在这里,我们重点介绍了 NP 行为的两个方面的要点,即它们的物理化学性质和它们吸附的蛋白质的性质,以揭示其中的奥秘。简介:蛋白质冠的形成仍然是实现纳米医学预期疗效的主要障碍。当蛋白质与纳米颗粒(NP)表面相互作用时,会发生结构和生物变化。此外,众所周知,NP 具有抗淀粉样变性的行为,在这种行为中,NP 起着防止其天然结构发生任何变化的关键作用。NP 似乎具有不同的作用,需要进行认真的探究。