Suppr超能文献

一种用于联合开发多种适应症药物联合疗法的贝叶斯 I/II 期平台设计。

A Bayesian phase I/II platform design for co-developing drug combination therapies for multiple indications.

作者信息

Mu Rongji, Xu Jin, Tang Rui Sammi, Kopetz Scott, Yuan Ying

机构信息

Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

KLATASDS-MOE, School of Statistics, East China Normal University, Shanghai, China.

出版信息

Stat Med. 2022 Jan 30;41(2):374-389. doi: 10.1002/sim.9242. Epub 2021 Nov 3.

Abstract

There is a growing trend to combine a new targeted or immunotherapy agent with the cancer-specific standard of care to treat different types of cancers. We propose a master-protocol-based, Bayesian phase I/II platform design to co-develop combination (BPCC) therapies in multiple indications. Under the BPCC design, only a single master protocol is needed, and the combined drug is evaluated in different indications in a concurrent or staggered fashion. For each indication, we jointly model dose-toxicity and -efficacy relationships and employ Bayesian hierarchical models to borrow information across them for more efficient indication-specific decision-making. To account for the characteristic of targeted or immunotherapy agents that their efficacy may not monotonically increase with the dose, and often plateau at high doses, we use the utility to quantify the risk-benefit tradeoff of the treatment. At each interim, we update the toxicity and efficacy model, as well as the estimate of the utility, based on the observed data across indications to inform the indication-specific decision of dose escalation and de-escalation and identify the optimal biological dose for each indication. Simulation study shows that the BPCC design has desirable operating characteristics, and that it provides an efficient approach to accelerate the development of combination therapies.

摘要

将新型靶向或免疫治疗药物与癌症特异性标准治疗方法联合起来治疗不同类型癌症的趋势日益增长。我们提出了一种基于主方案的贝叶斯I/II期平台设计,用于在多种适应症中共同开发联合(BPCC)疗法。在BPCC设计下,只需要一个主方案,联合药物以并行或交错的方式在不同适应症中进行评估。对于每种适应症,我们联合建立剂量-毒性和剂量-疗效关系模型,并采用贝叶斯分层模型在它们之间借用信息,以进行更有效的特定适应症决策。为了考虑靶向或免疫治疗药物的疗效可能不会随剂量单调增加且在高剂量时往往趋于平稳的特点,我们使用效用值来量化治疗的风险-收益权衡。在每个中期,我们根据各适应症的观察数据更新毒性和疗效模型以及效用值估计,为特定适应症的剂量递增和递减决策提供依据,并确定每种适应症的最佳生物学剂量。模拟研究表明,BPCC设计具有理想的操作特性,并且它为加速联合疗法的开发提供了一种有效的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验