Suppr超能文献

贝叶斯平台试验设计,用于同时评估多个适应证中具有混合终点的多种药物。

A Bayesian platform trial design to simultaneously evaluate multiple drugs in multiple indications with mixed endpoints.

机构信息

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas.

Servier Pharmaceuticals, Boston, Massachusetts.

出版信息

Biometrics. 2023 Jun;79(2):1459-1471. doi: 10.1111/biom.13694. Epub 2022 May 25.

Abstract

In the era of targeted therapies and immunotherapies, the traditional drug development paradigm of testing one drug at a time in one indication has become increasingly inefficient. Motivated by a real-world application, we propose a master-protocol-based Bayesian platform trial design with mixed endpoints (PDME) to simultaneously evaluate multiple drugs in multiple indications, where different subsets of efficacy measures (eg, objective response and landmark progression-free survival) may be used by different indications as single or multiple endpoints. We propose a Bayesian hierarchical model to accommodate mixed endpoints and reflect the trial structure of indications that are nested within treatments. We develop a two-stage approach that first clusters the indications into homogeneous subgroups and then applies the Bayesian hierarchical model to each subgroup to achieve precision information borrowing. Patients are enrolled in a group-sequential way and adaptively assigned to treatments according to their efficacy estimates. At each interim analysis, the posterior probabilities that the treatment effect exceeds prespecified clinically relevant thresholds are used to drop ineffective treatments and "graduate" effective treatments. Simulations show that the PDME design has desirable operating characteristics compared to existing method.

摘要

在靶向治疗和免疫疗法时代,一次针对一个适应证测试一种药物的传统药物开发模式已变得效率低下。受实际应用的启发,我们提出了一种基于主方案的贝叶斯平台试验设计,其具有混合终点(PDME),可同时评估多个适应证中的多种药物,其中不同的疗效测量子集(例如,客观缓解和标志性无进展生存期)可能被不同的适应证用作单一或多个终点。我们提出了一个贝叶斯分层模型来适应混合终点,并反映出嵌套在治疗中的适应证的试验结构。我们开发了一种两阶段方法,首先将适应证聚类成同质亚组,然后将贝叶斯分层模型应用于每个亚组以实现精确信息借用。患者以分组顺序入组,并根据疗效估计值自适应地分配治疗方法。在每次中期分析中,治疗效果超过预设临床相关阈值的后验概率用于剔除无效治疗方法并“毕业”有效治疗方法。模拟结果表明,与现有方法相比,PDME 设计具有理想的操作特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验