Mistry S, Pillai R, Mattia D, Borg M K
School of Engineering, Institute of Multiscale Thermofluids, The University of Edinburgh, Edinburgh EH9 3FB, UK.
Department of Chemical Engineering and Centre for Advanced Separations Engineering, University of Bath, Bath BA2 7AY, UK.
Nanoscale. 2021 Nov 11;13(43):18096-18102. doi: 10.1039/d1nr04794a.
Carbon nanotubes (CNTs) have long been heralded as the material of choice for next-generation membranes. Some studies have suggested that boron nitride nanotubes (BNNTs) may offer higher transport of pure water than CNTs, while others conclude otherwise. In this work, we use a combination of simulations and experimental data to uncover the causes of this discrepancy and investigate the flow resistance through BNNT membranes in detail. By dividing the resistance of the nanotube membranes into their contributing components, we study the effects of pore end configuration, membrane length, and BNNT atom partial charges. Most molecular simulation studies of BNNT membranes use short membranes connected to high and low pressure reservoirs. Here we find that flow resistances in these short membranes are dominated by the resistance at the pore ends, which can obscure the understanding of water transport performance through the nanotubes and comparison between different nanotube materials. In contrast, it is the flow resistance inside the nanotubes that dominates microscale-thick laboratory membranes, and end resistances tend to be negligible. Judged by the nanotube flow resistance alone, we therefore find that CNTs are likely to consistently outperform BNNTs. Furthermore, we find a large role played by the choice of partial charges on the BN atoms in the flow resistance measurements in our molecular simulations. This paper highlights a way forward for comparing molecular simulations and experimental results.
长期以来,碳纳米管(CNTs)一直被誉为下一代膜的首选材料。一些研究表明,氮化硼纳米管(BNNTs)的纯水通量可能高于碳纳米管,而另一些研究则得出相反的结论。在这项工作中,我们结合模拟和实验数据来揭示这种差异的原因,并详细研究通过BNNT膜的流动阻力。通过将纳米管膜的阻力分解为其组成部分,我们研究了孔端构型、膜长度和BNNT原子部分电荷的影响。大多数关于BNNT膜的分子模拟研究使用连接到高压和低压储液器的短膜。在这里,我们发现这些短膜中的流动阻力主要由孔端的阻力决定,这可能会模糊对通过纳米管的水传输性能的理解以及不同纳米管材料之间的比较。相比之下,在微米级厚度的实验室膜中,主导流动阻力的是纳米管内部的阻力,而端部阻力往往可以忽略不计。因此,仅从纳米管流动阻力判断,我们发现碳纳米管可能始终优于氮化硼纳米管。此外,我们发现在我们的分子模拟中,硼原子部分电荷的选择在流动阻力测量中起着很大的作用。本文强调了一种比较分子模拟和实验结果的方法。