文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

氮化硼和二硫化钼纳米结构在电子、能源、生物医学及环境应用方面的进展

Progress in Electronic, Energy, Biomedical and Environmental Applications of Boron Nitride and MoS Nanostructures.

作者信息

Uddin Join, Dubey Raksha, Balasubramaniam Vinaayak Sivam, Kabel Jeff, Khare Vedika, Salimi Zohreh, Sharma Sambhawana, Zhang Dongyan, Yap Yoke Khin

机构信息

Department of Physics, Michigan Technological University, 118 Fisher Hall, 1400 Townsend Drive, Houghton, MI 49931, USA.

The Elizabeth and Richard Henes Center for Quantum Phenomena, Michigan Technological University, 118 Fisher Hall, 1400 Townsend Drive, Houghton, MI 49931, USA.

出版信息

Micromachines (Basel). 2024 Feb 29;15(3):349. doi: 10.3390/mi15030349.


DOI:10.3390/mi15030349
PMID:38542596
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10972515/
Abstract

In this review, we examine recent progress using boron nitride (BN) and molybdenum disulfide (MoS) nanostructures for electronic, energy, biomedical, and environmental applications. The scope of coverage includes zero-, one-, and two-dimensional nanostructures such as BN nanosheets, BN nanotubes, BN quantum dots, MoS nanosheets, and MoS quantum dots. These materials have sizable bandgaps, differentiating them from other metallic nanostructures or small-bandgap materials. We observed two interesting trends: (1) an increase in applications that use heterogeneous materials by combining BN and MoS nanostructures with other nanomaterials, and (2) strong research interest in environmental applications. Last, we encourage researchers to study how to remove nanomaterials from air, soil, and water contaminated with nanomaterials. As nanotechnology proceeds into various applications, environmental contamination is inevitable and must be addressed. Otherwise, nanomaterials will go into our food chain much like microplastics.

摘要

在本综述中,我们研究了使用氮化硼(BN)和二硫化钼(MoS)纳米结构在电子、能源、生物医学和环境应用方面的最新进展。涵盖范围包括零维、一维和二维纳米结构,如BN纳米片、BN纳米管、BN量子点、MoS纳米片和MoS量子点。这些材料具有相当大的带隙,这使它们有别于其他金属纳米结构或小带隙材料。我们观察到两个有趣的趋势:(1)通过将BN和MoS纳米结构与其他纳米材料相结合来使用异质材料的应用有所增加,以及(2)对环境应用有浓厚的研究兴趣。最后,我们鼓励研究人员研究如何从被纳米材料污染的空气、土壤和水中去除纳米材料。随着纳米技术进入各种应用领域,环境污染是不可避免的,必须加以解决。否则,纳米材料将像微塑料一样进入我们的食物链。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/7a56ff9285bc/micromachines-15-00349-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/16c25c8a7a8a/micromachines-15-00349-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/cd0393184a46/micromachines-15-00349-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/f42f1dc02f90/micromachines-15-00349-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/879727cd65a9/micromachines-15-00349-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/cc1557054159/micromachines-15-00349-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/9a0ed72e5c89/micromachines-15-00349-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/3ae91805145c/micromachines-15-00349-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/03a57d097200/micromachines-15-00349-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/c16e6fea40c8/micromachines-15-00349-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/369465e9f9aa/micromachines-15-00349-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/5aed1aec7d55/micromachines-15-00349-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/8740251020ec/micromachines-15-00349-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/80f8c4119ba7/micromachines-15-00349-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/89176f210f1c/micromachines-15-00349-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/31e7cf7afe3e/micromachines-15-00349-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/a16ba10db25c/micromachines-15-00349-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/6f6b61513515/micromachines-15-00349-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/8df3f0e6e677/micromachines-15-00349-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/7a56ff9285bc/micromachines-15-00349-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/16c25c8a7a8a/micromachines-15-00349-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/cd0393184a46/micromachines-15-00349-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/f42f1dc02f90/micromachines-15-00349-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/879727cd65a9/micromachines-15-00349-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/cc1557054159/micromachines-15-00349-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/9a0ed72e5c89/micromachines-15-00349-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/3ae91805145c/micromachines-15-00349-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/03a57d097200/micromachines-15-00349-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/c16e6fea40c8/micromachines-15-00349-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/369465e9f9aa/micromachines-15-00349-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/5aed1aec7d55/micromachines-15-00349-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/8740251020ec/micromachines-15-00349-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/80f8c4119ba7/micromachines-15-00349-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/89176f210f1c/micromachines-15-00349-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/31e7cf7afe3e/micromachines-15-00349-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/a16ba10db25c/micromachines-15-00349-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/6f6b61513515/micromachines-15-00349-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/8df3f0e6e677/micromachines-15-00349-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0f/10972515/7a56ff9285bc/micromachines-15-00349-g019.jpg

相似文献

[1]
Progress in Electronic, Energy, Biomedical and Environmental Applications of Boron Nitride and MoS Nanostructures.

Micromachines (Basel). 2024-2-29

[2]
Cytotoxicity and Efflux Pump Inhibition Induced by Molybdenum Disulfide and Boron Nitride Nanomaterials with Sheetlike Structure.

Environ Sci Technol. 2017-9-6

[3]
Environmental Applications of 2D Molybdenum Disulfide (MoS) Nanosheets.

Environ Sci Technol. 2017-7-17

[4]
Molybdenum disulfide nanosheets: From exfoliation preparation to biosensing and cancer therapy applications.

Colloids Surf B Biointerfaces. 2020-10

[5]
Direct Growth of Single- and Few-Layer MoS2 on h-BN with Preferred Relative Rotation Angles.

Nano Lett. 2015-9-14

[6]
Toward barrier free contact to molybdenum disulfide using graphene electrodes.

Nano Lett. 2015-4-22

[7]
Properties and applications of boron nitride nanotubes.

Nanotechnology. 2022-3-30

[8]
Thermal Conductivity Performance of 2D hBN/MoS/Hybrid Nanostructures Used on Natural and Synthetic Esters.

Nanomaterials (Basel). 2020-6-12

[9]
Dissolution of 2D Molybdenum Disulfide Generates Differential Toxicity among Liver Cell Types Compared to Non-Toxic 2D Boron Nitride Effects.

Small. 2021-6

[10]
2D MoS -Based Nanomaterials for Therapeutic, Bioimaging, and Biosensing Applications.

Small. 2018-11-22

本文引用的文献

[1]
Selective Activation of Cells by Piezoelectric Molybdenum Disulfide Nanosheets with Focused Ultrasound.

ACS Nano. 2023-5-23

[2]
Electronic Properties of Vertically Stacked h-BN/BAlN Heterojunction on Si(100).

ACS Appl Mater Interfaces. 2023-3-29

[3]
Advances and challenges of aluminum-sulfur batteries.

Commun Chem. 2022-7-4

[4]
A Review of Scalable Hexagonal Boron Nitride (h-BN) Synthesis for Present and Future Applications.

Adv Mater. 2023-2

[5]
Evolution Application of Two-Dimensional MoS-Based Field-Effect Transistors.

Nanomaterials (Basel). 2022-9-18

[6]
Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111).

Nature. 2022-6

[7]
High-κ perovskite membranes as insulators for two-dimensional transistors.

Nature. 2022-5

[8]
A review of molybdenum disulfide (MoS) based photodetectors: from ultra-broadband, self-powered to flexible devices.

RSC Adv. 2020-8-19

[9]
Growth of Tellurium Nanobelts on h-BN for p-type Transistors with Ultrahigh Hole Mobility.

Nanomicro Lett. 2022-4-19

[10]
Clean BN-Encapsulated 2D FETs with Lithography-Compatible Contacts.

ACS Appl Mater Interfaces. 2022-4-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索