Suppr超能文献

住院 COVID-19 患者呼吸道细菌合并感染的预测因素。

Predictors of respiratory bacterial co-infection in hospitalized COVID-19 patients.

机构信息

Department of Pharmacy, The Ohio State University Wexner Medical Center, Columbus, OH, USA.

Department of Internal Medicine, Division of Infectious Diseases, The Ohio State University Wexner Medical Center, Columbus, OH, USA.

出版信息

Diagn Microbiol Infect Dis. 2022 Jan;102(1):115558. doi: 10.1016/j.diagmicrobio.2021.115558. Epub 2021 Sep 30.

Abstract

The primary objectives were to determine the prevalence of and identify variables associated with respiratory bacterial co-infection in COVID-19 inpatients. Secondary outcomes included length of stay and in-hospital mortality. Eighty-two (11.2%) of 735 COVID-19 inpatients had respiratory bacterial co-infection. Fifty-seven patients met inclusion criteria and were matched to three patients lacking co-infection (N = 228 patients). Patients with co-infection were more likely to receive antibiotics [57 (100%) vs 130 (76%), P < 0.0001] and for a longer duration [19 (13-33) vs 8 (4-13) days, P < 0.0001]. The multi-variable logistic regression model revealed risk factors of respiratory bacterial co-infection to be admission from SNF/LTAC/NH (AOR 6.8, 95% CI 2.6-18.2), severe COVID-19 (AOR 3.03, 95% CI 0.78-11.9), and leukocytosis (AOR 3.03, 95% CI 0.99-1.16). Although respiratory bacterial co-infection is rare in COVID-19 inpatients, antibiotic use is common. Early recognition of respiratory bacterial coinfection predictors in COVID-19 inpatients may improve empiric antibiotic prescribing.

摘要

主要目标是确定 COVID-19 住院患者中呼吸道细菌合并感染的患病率,并确定与呼吸道细菌合并感染相关的变量。次要结局包括住院时间和院内死亡率。735 例 COVID-19 住院患者中,有 82 例(11.2%)存在呼吸道细菌合并感染。57 例患者符合纳入标准,并与 3 例无合并感染的患者相匹配(N=228 例患者)。合并感染的患者更有可能接受抗生素治疗[57(100%)比 130(76%),P<0.0001],且治疗时间更长[19(13-33)比 8(4-13)天,P<0.0001]。多变量逻辑回归模型显示,呼吸道细菌合并感染的危险因素为从 SNF/LTAC/NH 入院(AOR 6.8,95%CI 2.6-18.2)、COVID-19 严重程度(AOR 3.03,95%CI 0.78-11.9)和白细胞增多症(AOR 3.03,95%CI 0.99-1.16)。尽管 COVID-19 住院患者中呼吸道细菌合并感染罕见,但抗生素的使用却很常见。早期识别 COVID-19 住院患者中呼吸道细菌合并感染的预测因素可能有助于经验性抗生素治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90ea/8481625/c76c87d64dd8/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验