Suppr超能文献

非晶态磷中的团簇碎片及其在压力下的演化

Cluster Fragments in Amorphous Phosphorus and their Evolution under Pressure.

作者信息

Zhou Yuxing, Kirkpatrick William, Deringer Volker L

机构信息

Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford, OX1 3QR, UK.

出版信息

Adv Mater. 2022 Feb;34(5):e2107515. doi: 10.1002/adma.202107515. Epub 2021 Dec 10.

Abstract

Amorphous phosphorus (a-P) has long attracted interest because of its complex atomic structure, and more recently as an anode material for batteries. However, accurately describing and understanding a-P at the atomistic level remains a challenge. Here, it is shown that large-scale molecular-dynamics simulations, enabled by a machine-learning (ML)-based interatomic potential for phosphorus, can give new insights into the atomic structure of a-P and how this structure changes under pressure. The structural model so obtained contains abundant five-membered rings, as well as more complex seven- and eight-atom clusters. Changes in the simulated first sharp diffraction peak during compression and decompression indicate a hysteresis in the recovery of medium-range order. An analysis of cluster fragments, large rings, and voids suggests that moderate pressure (up to about 5 GPa) does not break the connectivity of clusters, but higher pressure does. The work provides a starting point for further computational studies of the structure and properties of a-P, and more generally it exemplifies how ML-driven modeling can accelerate the understanding of disordered functional materials.

摘要

非晶态磷(a-P)长期以来因其复杂的原子结构而备受关注,最近又作为电池的负极材料受到关注。然而,在原子层面准确描述和理解a-P仍然是一项挑战。在此,研究表明,基于机器学习(ML)的磷原子间势实现的大规模分子动力学模拟,能够为a-P的原子结构以及该结构在压力下如何变化提供新的见解。由此获得的结构模型包含丰富的五元环以及更复杂的七原子和八原子簇。压缩和解压过程中模拟的第一尖锐衍射峰的变化表明中程有序恢复存在滞后现象。对簇碎片、大环和空隙的分析表明,中等压力(高达约5吉帕)不会破坏簇的连通性,但更高的压力会。这项工作为进一步计算研究a-P的结构和性质提供了一个起点,更普遍地说,它例证了ML驱动的建模如何能够加速对无序功能材料的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验