Suppr超能文献

利用多组学数据的整合连接实现临床应用的计算方法。

Computational approaches leveraging integrated connections of multi-omic data toward clinical applications.

作者信息

Demirel Habibe Cansu, Arici Muslum Kaan, Tuncbag Nurcan

机构信息

Graduate School of Informatics, Middle East Technical University, Ankara, 06800, Turkey.

Foot and Mouth Diseases Institute, Ministry of Agriculture and Forestry, Ankara, 06044, Turkey.

出版信息

Mol Omics. 2022 Jan 17;18(1):7-18. doi: 10.1039/d1mo00158b.

Abstract

In line with the advances in high-throughput technologies, multiple omic datasets have accumulated to study biological systems and diseases coherently. No single omics data type is capable of fully representing cellular activity. The complexity of the biological processes arises from the interactions between omic entities such as genes, proteins, and metabolites. Therefore, multi-omic data integration is crucial but challenging. The impact of the molecular alterations in multi-omic data is not local in the neighborhood of the altered gene or protein; rather, the impact diffuses in the network and changes the functionality of multiple signaling pathways and regulation of the gene expression. Additionally, multi-omic data is high-dimensional and has background noise. Several integrative approaches have been developed to accurately interpret the multi-omic datasets, including machine learning, network-based methods, and their combination. In this review, we overview the most recent integrative approaches and tools with a focus on network-based methods. We then discuss these approaches according to their specific applications, from disease-network and biomarker identification to patient stratification, drug discovery, and repurposing.

摘要

随着高通量技术的进步,已经积累了多个组学数据集,以便连贯地研究生物系统和疾病。没有单一的组学数据类型能够完全代表细胞活性。生物过程的复杂性源于基因、蛋白质和代谢物等组学实体之间的相互作用。因此,多组学数据整合至关重要但具有挑战性。多组学数据中分子改变的影响并非局限于改变的基因或蛋白质的邻域;相反,这种影响会在网络中扩散,并改变多个信号通路的功能以及基因表达的调控。此外,多组学数据是高维的且存在背景噪声。已经开发了几种整合方法来准确解释多组学数据集,包括机器学习、基于网络的方法及其组合。在本综述中,我们概述了最新的整合方法和工具,重点是基于网络的方法。然后,我们根据这些方法的具体应用进行讨论,从疾病网络和生物标志物识别到患者分层、药物发现和药物再利用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验