Graduate School of Informatics, Middle East Technical University, Ankara 06800, Turkey.
Chemical and Biological Engineering, College of Engineering, Koc University, Istanbul 34450, Turkey.
Brief Bioinform. 2024 Jul 25;25(5). doi: 10.1093/bib/bbae399.
Network inference or reconstruction algorithms play an integral role in successfully analyzing and identifying causal relationships between omics hits for detecting dysregulated and altered signaling components in various contexts, encompassing disease states and drug perturbations. However, accurate representation of signaling networks and identification of context-specific interactions within sparse omics datasets in complex interactomes pose significant challenges in integrative approaches. To address these challenges, we present pyPARAGON (PAgeRAnk-flux on Graphlet-guided network for multi-Omic data integratioN), a novel tool that combines network propagation with graphlets. pyPARAGON enhances accuracy and minimizes the inclusion of nonspecific interactions in signaling networks by utilizing network rather than relying on pairwise connections among proteins. Through comprehensive evaluations on benchmark signaling pathways, we demonstrate that pyPARAGON outperforms state-of-the-art approaches in node propagation and edge inference. Furthermore, pyPARAGON exhibits promising performance in discovering cancer driver networks. Notably, we demonstrate its utility in network-based stratification of patient tumors by integrating phosphoproteomic data from 105 breast cancer tumors with the interactome and demonstrating tumor-specific signaling pathways. Overall, pyPARAGON is a novel tool for analyzing and integrating multi-omic data in the context of signaling networks. pyPARAGON is available at https://github.com/netlab-ku/pyPARAGON.
网络推断或重建算法在分析和识别组学命中之间的因果关系方面起着至关重要的作用,可用于检测各种情况下失调和改变的信号成分,包括疾病状态和药物干扰。然而,在复杂的相互作用网络中,稀疏组学数据集中准确表示信号网络和识别特定于上下文的相互作用是综合方法面临的重大挑战。为了解决这些挑战,我们提出了 pyPARAGON(基于图节点的 PageRank 通量用于多组学数据整合的网络),这是一种将网络传播与图节点结合的新工具。pyPARAGON通过利用网络而不是依赖于蛋白质之间的成对连接,提高了信号网络中准确性并最小化了非特异性相互作用的包含。通过对基准信号通路的全面评估,我们证明了 pyPARAGON在节点传播和边缘推断方面优于最先进的方法。此外,pyPARAGON 在发现癌症驱动网络方面表现出有前景的性能。值得注意的是,我们通过整合来自 105 个乳腺癌肿瘤的磷酸蛋白质组学数据与相互作用网络,并展示肿瘤特异性信号通路,证明了其在基于网络的患者肿瘤分层中的实用性。总体而言,pyPARAGON 是一种用于分析和整合信号网络上下文中多组学数据的新工具。pyPARAGON 可在 https://github.com/netlab-ku/pyPARAGON 上获得。