Suppr超能文献

用于识别疾病相关模块的微生物组数据多组学整合

Multi-omic integration of microbiome data for identifying disease-associated modules.

作者信息

Muller Efrat, Shiryan Itamar, Borenstein Elhanan

出版信息

bioRxiv. 2024 Jan 23:2023.07.03.547607. doi: 10.1101/2023.07.03.547607.

Abstract

The human gut microbiome is a complex ecosystem with profound implications for health and disease. This recognition has led to a surge in multi-omic microbiome studies, employing various molecular assays to elucidate the microbiome's role in diseases across multiple functional layers. However, despite the clear value of these multi-omic datasets, rigorous integrative analysis of such data poses significant challenges, hindering a comprehensive understanding of microbiome-disease interactions. Perhaps most notably, multiple approaches, including univariate and multivariate analyses, as well as machine learning, have been applied to such data to identify disease-associated markers, namely, specific features (e.g., species, pathways, metabolites) that are significantly altered in disease state. These methods, however, often yield extensive lists of features associated with the disease without effectively capturing the multi-layered structure of multi-omic data or offering clear, interpretable hypotheses about underlying microbiome-disease mechanisms. Here, we address this challenge by introducing an intermediate integration-based method for analyzing multi-omic microbiome data. MintTea combines a canonical correlation analysis (CCA) extension, consensus analysis, and an evaluation protocol to robustly identify disease-associated multi-omic modules. Each such module consists of a set of features from the various omics that both shift in concord, and collectively associate with the disease. Applying MintTea to diverse case-control cohorts with multi-omic data, we show that this framework is able to capture modules with high predictive power for disease, significant cross-omic correlations, and alignment with known microbiome-disease associations. For example, analyzing samples from a metabolic syndrome (MS) study, we found a MS-associated module comprising of a highly correlated cluster of serum glutamate- and TCA cycle-related metabolites, as well as bacterial species previously implicated in insulin resistance. In another cohort, we identified a module associated with late-stage colorectal cancer, featuring and species and several fecal amino acids, in agreement with these species' reported role in the metabolism of these amino acids and their coordinated increase in abundance during disease development. Finally, comparing modules identified in different datasets, we detected multiple significant overlaps, suggesting common interactions between microbiome features. Combined, this work serves as a proof of concept for the potential benefits of advanced integration methods in generating integrated multi-omic hypotheses underlying microbiome-disease interactions and a promising avenue for researchers seeking systems-level insights into coherent mechanisms governing microbiome-related diseases.

摘要

人类肠道微生物群是一个复杂的生态系统,对健康和疾病有着深远的影响。这种认识促使多组学微生物群研究激增,采用各种分子分析方法来阐明微生物群在多个功能层面的疾病中的作用。然而,尽管这些多组学数据集具有明确的价值,但对这类数据进行严格的综合分析面临重大挑战,阻碍了对微生物群与疾病相互作用的全面理解。也许最值得注意的是,包括单变量和多变量分析以及机器学习在内的多种方法已应用于此类数据,以识别与疾病相关的标志物,即疾病状态下显著改变的特定特征(例如,物种、途径、代谢物)。然而,这些方法往往会产生大量与疾病相关的特征列表,却没有有效地捕捉多组学数据的多层结构,也没有提供关于潜在微生物群与疾病机制的清晰、可解释的假设。在这里,我们通过引入一种基于中间整合的方法来分析多组学微生物群数据,以应对这一挑战。MintTea结合了典型相关分析(CCA)扩展、共识分析和评估协议,以稳健地识别与疾病相关的多组学模块。每个这样的模块由来自各种组学的一组特征组成,这些特征既协同变化,又与疾病共同相关。将MintTea应用于具有多组学数据的不同病例对照队列,我们表明该框架能够捕获对疾病具有高预测能力、显著的跨组学相关性且与已知微生物群与疾病关联一致的模块。例如,分析来自代谢综合征(MS)研究的样本时,我们发现了一个与MS相关的模块,该模块由一组血清谷氨酸和三羧酸循环相关代谢物以及先前与胰岛素抵抗有关的细菌物种组成的高度相关集群。在另一个队列中,我们确定了一个与晚期结直肠癌相关的模块,其特征是 和 物种以及几种粪便氨基酸,这与这些物种在这些氨基酸代谢中的报道作用以及它们在疾病发展过程中丰度的协同增加一致。最后,比较在不同数据集中识别的模块,我们检测到多个显著重叠,表明微生物群特征之间存在共同的相互作用。综合来看,这项工作证明了先进的整合方法在生成微生物群与疾病相互作用的综合多组学假设方面的潜在益处,为寻求对控制微生物群相关疾病的连贯机制进行系统层面洞察的研究人员提供了一条有前景的途径。

相似文献

5
Poly-omic risk scores predict inflammatory bowel disease diagnosis.多组学风险评分可预测炎症性肠病的诊断。
mSystems. 2024 Jan 23;9(1):e0067723. doi: 10.1128/msystems.00677-23. Epub 2023 Dec 14.
9
Multi-omic approaches for host-microbiome data integration.基于组学的宿主-微生物组数据整合方法。
Gut Microbes. 2024 Jan-Dec;16(1):2297860. doi: 10.1080/19490976.2023.2297860. Epub 2024 Jan 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验