Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.
PLoS One. 2023 Aug 7;18(8):e0289499. doi: 10.1371/journal.pone.0289499. eCollection 2023.
The inspection of stained tissue slides by pathologists is essential for the early detection, diagnosis and monitoring of disease. Recently, deep learning methods for the analysis of whole-slide images (WSIs) have shown excellent performance on these tasks, and have the potential to substantially reduce the workload of pathologists. However, WSIs present a number of unique challenges for analysis, requiring special consideration of image annotations, slide and image artefacts, and evaluation of WSI-trained model performance. Here we introduce SliDL, a Python library for performing pre- and post-processing of WSIs. SliDL makes WSI data handling easy, allowing users to perform essential processing tasks in a few simple lines of code, bridging the gap between standard image analysis and WSI analysis. We introduce each of the main functionalities within SliDL: from annotation and tile extraction to tissue detection and model evaluation. We also provide 'code snippets' to guide the user in running SliDL. SliDL has been designed to interact with PyTorch, one of the most widely used deep learning libraries, allowing seamless integration into deep learning workflows. By providing a framework in which deep learning methods for WSI analysis can be developed and applied, SliDL aims to increase the accessibility of an important application of deep learning.
病理学家对染色组织切片的检查对于疾病的早期发现、诊断和监测至关重要。最近,用于全切片图像(WSI)分析的深度学习方法在这些任务上表现出了优异的性能,并有潜力大大减轻病理学家的工作量。然而,WSI 分析存在一些独特的挑战,需要特别考虑图像标注、切片和图像伪影,以及评估基于 WSI 训练的模型性能。这里我们介绍了 SliDL,这是一个用于执行 WSI 预处理和后处理的 Python 库。SliDL 使 WSI 数据处理变得容易,允许用户在几行简单的代码中执行基本的处理任务,在标准图像分析和 WSI 分析之间架起了桥梁。我们介绍了 SliDL 中的每个主要功能:从注释和提取 tile 到组织检测和模型评估。我们还提供了“代码片段”来指导用户运行 SliDL。SliDL 旨在与最广泛使用的深度学习库之一 PyTorch 交互,允许无缝集成到深度学习工作流程中。通过提供一个可以开发和应用 WSI 分析深度学习方法的框架,SliDL 旨在增加深度学习在这一重要应用中的可访问性。