Suppr超能文献

利用自动化图像分割和机器学习方法量化共生真菌的根定植。

Quantifying root colonization by a symbiotic fungus using automated image segmentation and machine learning approaches.

机构信息

Department of Life Sciences and Systems Biology, Università di Torino, Turin, Italy.

出版信息

Sci Rep. 2023 Sep 8;13(1):14830. doi: 10.1038/s41598-023-39217-z.

Abstract

Arbuscular mycorrhizas (AM) are one of the most widespread symbiosis on earth. This plant-fungus interaction involves around 72% of plant species, including most crops. AM symbiosis improves plant nutrition and tolerance to biotic and abiotic stresses. The fungus, in turn, receives carbon compounds derived from the plant photosynthetic process, such as sugars and lipids. Most studies investigating AM and their applications in agriculture requires a precise quantification of the intensity of plant colonization. At present, the majority of researchers in the field base AM quantification analyses on manual visual methods, prone to operator errors and limited reproducibility. Here we propose a novel semi-automated approach to quantify AM fungal root colonization based on digital image analysis comparing three methods: (i) manual quantification (ii) image thresholding, (iii) machine learning. We recognize machine learning as a very promising tool for accelerating, simplifying and standardizing critical steps in analysing AM quantification, answering to an urgent need by the scientific community studying this symbiosis.

摘要

丛枝菌根(AM)是地球上分布最广泛的共生关系之一。这种植物-真菌的相互作用涉及到大约 72%的植物物种,包括大多数作物。AM 共生关系改善了植物的营养和对生物及非生物胁迫的耐受性。反过来,真菌从植物的光合作用过程中获得碳化合物,如糖和脂质。大多数研究 AM 及其在农业中的应用的研究都需要精确量化植物定殖的强度。目前,该领域的大多数研究人员基于手动视觉方法对 AM 进行定量分析,容易出现操作误差和有限的重现性。在这里,我们提出了一种基于数字图像分析的半自动化方法来量化 AM 真菌根定殖,比较了三种方法:(i)手动量化、(ii)图像阈值化、(iii)机器学习。我们认为机器学习是一种非常有前途的工具,可以加速、简化和标准化分析 AM 定量的关键步骤,这是研究这种共生关系的科学界的迫切需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebbf/10491830/a42cc84cdbd1/41598_2023_39217_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验