Suppr超能文献

基于深度学习的计算机断层扫描诊断 COVID-19 的准确性:一项连续采样的外部验证队列研究。

Accuracy of deep learning-based computed tomography diagnostic system for COVID-19: A consecutive sampling external validation cohort study.

机构信息

Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.

Hospital Care Research Unit, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Hyogo, Japan.

出版信息

PLoS One. 2021 Nov 4;16(11):e0258760. doi: 10.1371/journal.pone.0258760. eCollection 2021.

Abstract

Ali-M3, an artificial intelligence program, analyzes chest computed tomography (CT) and detects the likelihood of coronavirus disease (COVID-19) based on scores ranging from 0 to 1. However, Ali-M3 has not been externally validated. Our aim was to evaluate the accuracy of Ali-M3 for detecting COVID-19 and discuss its clinical value. We evaluated the external validity of Ali-M3 using sequential Japanese sampling data. In this retrospective cohort study, COVID-19 infection probabilities for 617 symptomatic patients were determined using Ali-M3. In 11 Japanese tertiary care facilities, these patients underwent reverse transcription-polymerase chain reaction (RT-PCR) testing. They also underwent chest CT to confirm a diagnosis of COVID-19. Of the 617 patients, 289 (46.8%) were RT-PCR-positive. The area under the curve (AUC) of Ali-M3 for predicting a COVID-19 diagnosis was 0.797 (95% confidence interval: 0.762‒0.833) and the goodness-of-fit was P = 0.156. With a cut-off probability of a diagnosis of COVID-19 by Ali-M3 set at 0.5, the sensitivity and specificity were 80.6% and 68.3%, respectively. A cut-off of 0.2 yielded a sensitivity and specificity of 89.2% and 43.2%, respectively. Among the 223 patients who required oxygen, the AUC was 0.825. Sensitivity at a cut-off of 0.5% and 0.2% was 88.7% and 97.9%, respectively. Although the sensitivity was lower when the days from symptom onset were fewer, the sensitivity increased for both cut-off values after 5 days. We evaluated Ali-M3 using external validation with symptomatic patient data from Japanese tertiary care facilities. As Ali-M3 showed sufficient sensitivity performance, despite a lower specificity performance, Ali-M3 could be useful in excluding a diagnosis of COVID-19.

摘要

人工智能程序 Ali-M3 分析胸部计算机断层扫描(CT)并根据 0 至 1 的分数来检测冠状病毒病(COVID-19)的可能性。然而,Ali-M3 尚未经过外部验证。我们的目的是评估 Ali-M3 检测 COVID-19 的准确性,并讨论其临床价值。我们使用连续的日本抽样数据来评估 Ali-M3 的外部有效性。在这项回顾性队列研究中,使用 Ali-M3 确定了 617 例有症状患者的 COVID-19 感染概率。在 11 家日本三级保健机构中,对这些患者进行了逆转录聚合酶链反应(RT-PCR)检测。他们还进行了胸部 CT 以确认 COVID-19 的诊断。在 617 例患者中,289 例(46.8%)为 RT-PCR 阳性。Ali-M3 预测 COVID-19 诊断的曲线下面积(AUC)为 0.797(95%置信区间:0.762-0.833),拟合优度良好,P = 0.156。将 Ali-M3 诊断 COVID-19 的概率截断值设定为 0.5 时,灵敏度和特异性分别为 80.6%和 68.3%。截断值为 0.2 时,灵敏度和特异性分别为 89.2%和 43.2%。在需要吸氧的 223 例患者中,AUC 为 0.825。截断值为 0.5%和 0.2%时的灵敏度分别为 88.7%和 97.9%。虽然从症状发作到就诊的天数较少时,灵敏度较低,但在就诊后 5 天,两种截断值的灵敏度都有所增加。我们使用来自日本三级保健机构的有症状患者数据对 Ali-M3 进行了外部验证。尽管特异性表现较低,但 Ali-M3 表现出足够的灵敏度,因此 Ali-M3 可能有助于排除 COVID-19 的诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3919/8568139/942706156527/pone.0258760.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验