Suppr超能文献

基于预训练卷积神经网络的 CT 影像 COVID-19 分类的综合研究。

A comprehensive study on classification of COVID-19 on computed tomography with pretrained convolutional neural networks.

机构信息

Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar, 31952, Saudi Arabia.

出版信息

Sci Rep. 2020 Oct 9;10(1):16942. doi: 10.1038/s41598-020-74164-z.

Abstract

The use of imaging data has been reported to be useful for rapid diagnosis of COVID-19. Although computed tomography (CT) scans show a variety of signs caused by the viral infection, given a large amount of images, these visual features are difficult and can take a long time to be recognized by radiologists. Artificial intelligence methods for automated classification of COVID-19 on CT scans have been found to be very promising. However, current investigation of pretrained convolutional neural networks (CNNs) for COVID-19 diagnosis using CT data is limited. This study presents an investigation on 16 pretrained CNNs for classification of COVID-19 using a large public database of CT scans collected from COVID-19 patients and non-COVID-19 subjects. The results show that, using only 6 epochs for training, the CNNs achieved very high performance on the classification task. Among the 16 CNNs, DenseNet-201, which is the deepest net, is the best in terms of accuracy, balance between sensitivity and specificity, [Formula: see text] score, and area under curve. Furthermore, the implementation of transfer learning with the direct input of whole image slices and without the use of data augmentation provided better classification rates than the use of data augmentation. Such a finding alleviates the task of data augmentation and manual extraction of regions of interest on CT images, which are adopted by current implementation of deep-learning models for COVID-19 classification.

摘要

影像学数据的使用已被证明有助于 COVID-19 的快速诊断。虽然计算机断层扫描 (CT) 扫描显示了由病毒感染引起的各种征象,但由于图像数量庞大,这些视觉特征难以识别,且需要很长时间才能被放射科医生识别。用于 CT 扫描上 COVID-19 自动分类的人工智能方法已被证明非常有前途。然而,目前对使用 CT 数据进行 COVID-19 诊断的预训练卷积神经网络 (CNN) 的研究有限。本研究使用来自 COVID-19 患者和非 COVID-19 患者的大型公共 CT 扫描数据库,对 16 种预训练 CNN 进行了 COVID-19 分类的研究。结果表明,仅经过 6 个时期的训练,CNN 就在分类任务中取得了非常高的性能。在 16 种 CNN 中,最深的 DenseNet-201 在准确性、灵敏度和特异性之间的平衡、[Formula: see text]评分和曲线下面积方面表现最好。此外,直接输入全图像切片的迁移学习的实施,而不使用数据增强,提供了比使用数据增强更好的分类率。这样的发现减轻了数据增强和手动提取 CT 图像中感兴趣区域的任务,这是当前 COVID-19 分类的深度学习模型实施所采用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验