Suppr超能文献

基于胸部 CT 的 2019 年冠状病毒病(COVID-19)与病毒性肺炎的端到端自动区分。

End-to-end automatic differentiation of the coronavirus disease 2019 (COVID-19) from viral pneumonia based on chest CT.

机构信息

College of Medical Informatics, China Medical University, Shenyang, Liaoning, 110122, People's Republic of China.

School of Medicine, Department of Radiology, Stanford University, 1201 Welch Rd, Lucas Center, Palo Alto, CA, 94305, USA.

出版信息

Eur J Nucl Med Mol Imaging. 2020 Oct;47(11):2516-2524. doi: 10.1007/s00259-020-04929-1. Epub 2020 Jun 22.

Abstract

PURPOSE

In the absence of a virus nucleic acid real-time reverse transcriptase-polymerase chain reaction (RT-PCR) test and experienced radiologists, clinical diagnosis is challenging for viral pneumonia with clinical symptoms and CT signs similar to that of coronavirus disease 2019 (COVID-19). We developed an end-to-end automatic differentiation method based on CT images to identify COVID-19 pneumonia patients in real time.

METHODS

From January 18 to February 23, 2020, we conducted a retrospective study and enrolled 201 patients from two hospitals in China who underwent chest CT and RT-PCR tests, of which 98 patients tested positive for COVID-19 (118 males and 83 females, with an average age of 42 years). Patient CT images from one hospital were divided among training, validation and test datasets with an 80%:10%:10% ratio. An end-to-end representation learning method using a large-scale bi-directional generative adversarial network (BigBiGAN) architecture was designed to extract semantic features from the CT images. The semantic feature matrix was input for linear classifier construction. Patients from the other hospital were used for external validation. Differentiation accuracy was evaluated using a receiver operating characteristic curve.

RESULTS

Based on the 120-dimensional semantic features extracted by BigBiGAN from each image, the linear classifier results indicated that the area under the curve (AUC) in the training, validation and test datasets were 0.979, 0.968 and 0.972, respectively, with an average sensitivity of 92% and specificity of 91%. The AUC for external validation was 0.850, with a sensitivity of 80% and specificity of 75%. Publicly available architecture and computing resources were used throughout the study to ensure reproducibility.

CONCLUSION

This study provides an efficient recognition method for coronavirus disease 2019 pneumonia, using an end-to-end design to implement targeted and effective isolation for the containment of this communicable disease.

摘要

目的

在缺乏病毒核酸实时逆转录-聚合酶链反应(RT-PCR)检测和有经验的放射科医生的情况下,对于临床表现和 CT 征象类似于 2019 年冠状病毒病(COVID-19)的病毒性肺炎,临床诊断具有挑战性。我们开发了一种基于 CT 图像的端到端自动微分方法,以便实时识别 COVID-19 肺炎患者。

方法

2020 年 1 月 18 日至 2 月 23 日,我们进行了一项回顾性研究,纳入了来自中国两家医院的 201 名接受胸部 CT 和 RT-PCR 检测的患者,其中 98 例患者 COVID-19 检测阳性(118 名男性,83 名女性,平均年龄 42 岁)。一家医院的患者 CT 图像分为训练集、验证集和测试集,比例为 80%:10%:10%。设计了一种基于大型双向生成对抗网络(BigBiGAN)架构的端到端表示学习方法,从 CT 图像中提取语义特征。将语义特征矩阵输入线性分类器构建。另一家医院的患者用于外部验证。使用受试者工作特征曲线评估区分准确性。

结果

基于 BigBiGAN 从每张图像中提取的 120 维语义特征,线性分类器结果表明,在训练集、验证集和测试集中,曲线下面积(AUC)分别为 0.979、0.968 和 0.972,平均敏感性为 92%,特异性为 91%。外部验证的 AUC 为 0.850,敏感性为 80%,特异性为 75%。研究过程中使用了公开的架构和计算资源,以确保可重复性。

结论

本研究为 COVID-19 肺炎提供了一种高效的识别方法,采用端到端设计实现对传染病的有针对性和有效的隔离。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20ed/7515857/d354bcae5fa6/259_2020_4929_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验