Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute of Intelligent Computing Technology, Suzhou, China.
Neural Netw. 2022 Jan;145:121-127. doi: 10.1016/j.neunet.2021.09.028. Epub 2021 Oct 11.
When training deep learning models, data augmentation is an important technique to improve the performance and alleviate overfitting. In natural language processing (NLP), existing augmentation methods often use fixed strategies. However, it might be preferred to use different augmentation policies in different stage of training, and different datasets may require different augmentation policies. In this paper, we take dynamic policy scheduling into consideration. We design a search space over augmentation policies by integrating several common augmentation operations. Then, we adopt a population based training method to search the best augmentation schedule. We conduct extensive experiments on five text classification and two machine translation tasks. The results show that the optimized dynamic augmentation schedules achieve significant improvements against previous methods.
在训练深度学习模型时,数据增强是提高性能和缓解过拟合的重要技术。在自然语言处理(NLP)中,现有的增强方法通常使用固定策略。然而,在训练的不同阶段使用不同的增强策略可能更优,并且不同的数据集可能需要不同的增强策略。在本文中,我们考虑了动态策略调度。我们通过集成几种常见的增强操作来设计一个增强策略搜索空间。然后,我们采用基于种群的训练方法来搜索最佳的增强时间表。我们在五个文本分类和两个机器翻译任务上进行了广泛的实验。结果表明,优化后的动态增强时间表相对于先前的方法取得了显著的改进。