Suppr超能文献

健康提示:一种临床自然语言处理的零样本学习范式。

HealthPrompt: A Zero-shot Learning Paradigm for Clinical Natural Language Processing.

机构信息

Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, PA.

Department of Health Information Management, University of Pittsburgh, PA.

出版信息

AMIA Annu Symp Proc. 2023 Apr 29;2022:972-981. eCollection 2022.

Abstract

Developing clinical natural language systems based on machine learning and deep learning is dependent on the availability of large-scale annotated clinical text datasets, most of which are time-consuming to create and not publicly available. The lack of such annotated datasets is the biggest bottleneck for the development of clinical NLP systems. Zero-Shot Learning (ZSL) refers to the use of deep learning models to classify instances from new classes of which no training data have been seen before. Prompt-based learning is an emerging ZSL technique in NLP where we define task-based templates for different tasks. In this study, we developed a novel prompt-based clinical NLP framework called HealthPrompt and applied the paradigm of prompt-based learning on clinical texts. In this technique, rather than fine-tuning a Pre-trained Language Model (PLM), the task definitions are tuned by defining a prompt template. We performed an in-depth analysis of HealthPrompt on six different PLMs in a no-training-data setting. Our experiments show that HealthPrompt could effectively capture the context of clinical texts and perform well for clinical NLP tasks without any training data.

摘要

基于机器学习和深度学习开发临床自然语言系统依赖于大规模标注的临床文本数据集的可用性,而这些数据集大多需要耗费大量时间来创建,且无法公开获取。缺乏此类标注数据集是临床自然语言处理系统发展的最大瓶颈。零样本学习(ZSL)是指使用深度学习模型对以前从未见过训练数据的新类别的实例进行分类。基于提示的学习是 NLP 中一种新兴的 ZSL 技术,我们为不同任务定义基于任务的模板。在这项研究中,我们开发了一种名为 HealthPrompt 的新型基于提示的临床自然语言处理框架,并将基于提示的学习范式应用于临床文本。在这项技术中,不是通过微调预训练语言模型(PLM),而是通过定义提示模板来调整任务定义。我们在没有训练数据的情况下,在六个不同的 PLM 上对 HealthPrompt 进行了深入分析。我们的实验表明,HealthPrompt 可以有效地捕获临床文本的上下文,并在没有任何训练数据的情况下很好地执行临床自然语言处理任务。

相似文献

10
KEBLM: Knowledge-Enhanced Biomedical Language Models.KEBLM:知识增强型生物医学语言模型。
J Biomed Inform. 2023 Jul;143:104392. doi: 10.1016/j.jbi.2023.104392. Epub 2023 May 19.

引用本文的文献

10
CPLLM: Clinical prediction with large language models.CPLLM:基于大语言模型的临床预测
PLOS Digit Health. 2024 Dec 6;3(12):e0000680. doi: 10.1371/journal.pdig.0000680. eCollection 2024 Dec.

本文引用的文献

4
Zero-Shot Learning-A Comprehensive Evaluation of the Good, the Bad and the Ugly.零样本学习:好坏丑的全面评估。
IEEE Trans Pattern Anal Mach Intell. 2019 Sep;41(9):2251-2265. doi: 10.1109/TPAMI.2018.2857768. Epub 2018 Jul 19.
6
2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text.2010 i2b2/VA 挑战赛:临床文本中的概念、断言和关系
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6. doi: 10.1136/amiajnl-2011-000203. Epub 2011 Jun 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验