Department of Mechanical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA.
Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA.
Comput Methods Programs Biomed. 2021 Nov;212:106455. doi: 10.1016/j.cmpb.2021.106455. Epub 2021 Oct 12.
Radiation therapy is used in nearly 50% of cancer treatments in the developed world. Currently, radiation treatments are homogenous and fail to take into consideration intratumoral heterogeneity. We demonstrate the importance of considering intratumoral heterogeneity and the development of resistance during fractionated radiotherapy when the same dose of radiation is delivered for all fractions (Fractional Equivalent Dosing FED).
A mathematical model was developed with the following parameters: a starting population of 10 non-small cell lung cancer (NSCLC) tumor cells, 48 h doubling time, and cell death per the linear-quadratic (LQ) model with α and β values derived from RSIα/β, in a previously described gene expression based model that estimates α and β. To incorporate both inter- and intratumor radiation sensitivity, RSIα/β output for each patient sample is assumed to represent an average value in a gamma distribution with the bounds set to -50% and +50% of RSIα/b. Therefore, we assume that within a given tumor there are subpopulations that have varying radiation sensitivity parameters that are distinct from other tumor samples with a different mean RSIα/β. A simulation cohort (SC) comprised of 100 lung cancer patients with available RSIα/β (patient specific α and β values) was used to investigate 60 Gy in 30 fractions with fractionally equivalent dosing (FED). A separate validation cohort (VC) of 57 lung cancer patients treated with radiation with available local control (LC), overall survival (OS), and tumor gene expression was used to clinically validate the model. Cox regression was used to test for significance to predict clinical outcomes as a continuous variable in multivariate analysis (MVA). Finally, the VC was used to compare FED schedules with various altered fractionation schema utilizing a Kruskal-Wallis test. This was examined using the end points of end of treatment log cell count (LCC) and by a parameter described as mean log kill efficiency (LKE) defined as: LCC = log10(tumorcellcount) [Formula: see text] RESULTS: Cox regression analysis on LCC for the VC demonstrates that, after incorporation of intratumoral heterogeneity, LCC has a linear correlation with local control (p = 0.002) and overall survival (p = < 0.001). Other suggested treatment schedules labeled as High Intensity Treatment (HIT) with a total 60 Gy delivered over 6 weeks have a lower mean LCC and an increased LKE compared to standard of care 60 Gy delivered in FED in the VC.
We find that LCC is a clinically relevant metric that is correlated with local control and overall survival in NSCLC. We conclude that 60 Gy delivered over 6 weeks with altered HIT fractionation leads to an enhancement in tumor control compared to FED when intratumoral heterogeneity is considered.
在发达国家,近 50%的癌症治疗都采用放射疗法。目前,放射治疗是同质的,没有考虑到肿瘤内异质性。我们证明了在进行分割放疗时考虑肿瘤内异质性和发展抵抗的重要性,此时所有分数(分数等效剂量 FED)都使用相同的辐射剂量。
我们开发了一个数学模型,其中包含以下参数:10 个非小细胞肺癌 (NSCLC) 肿瘤细胞的起始种群、48 小时倍增时间,以及根据 LQ 模型的细胞死亡,其中 α 和 β 值来自 RSIα/β,这是一个之前描述的基于基因表达的模型,用于估计 α 和 β。为了结合肿瘤内和肿瘤间的放射敏感性,每个患者样本的 RSIα/β 输出被假定为伽马分布中的平均值,边界设定为 RSIα/β 的-50%和+50%。因此,我们假设在给定的肿瘤内存在具有不同放射敏感性参数的亚群,这些参数与其他具有不同平均 RSIα/β 的肿瘤样本不同。一个由 100 名具有可用 RSIα/β(患者特定的 α 和 β 值)的肺癌患者组成的模拟队列 (SC) 用于研究 60Gy 分 30 次的 FED。一个由 57 名接受放射治疗并有可用局部控制 (LC)、总生存期 (OS) 和肿瘤基因表达的肺癌患者组成的独立验证队列 (VC) 用于对模型进行临床验证。Cox 回归用于测试作为多变量分析 (MVA) 中的连续变量的显著预测临床结果。最后,使用 Kruskal-Wallis 检验在 VC 中比较了具有不同分割方案的 FED 方案。使用治疗结束时的对数细胞计数 (LCC) 终点和定义为:LCC = log10(tumorcellcount) [公式:见正文]的参数来检查这一点。
对 VC 的 LCC 进行 Cox 回归分析表明,在考虑肿瘤内异质性后,LCC 与局部控制 (p = 0.002) 和总生存期 (p < 0.001) 呈线性相关。其他建议的治疗方案标记为高强度治疗 (HIT),60Gy 在 6 周内完成,与 VC 中 FED 标准治疗相比,LCC 的平均值较低,LKE 增加。
我们发现 LCC 是一个与 NSCLC 局部控制和总生存期相关的临床相关指标。我们得出的结论是,当考虑肿瘤内异质性时,用改变的 HIT 分割方式在 6 周内输送 60Gy 可导致肿瘤控制的增强,而不是 FED。