Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China.
Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
Talanta. 2022 Jan 15;237:122909. doi: 10.1016/j.talanta.2021.122909. Epub 2021 Sep 29.
In this work, we propose a two-step coating method, combining C-ZIF67@Ni with molecular imprinting polymer (MIP), to develop a high-sensitivity and high-selectivity Carbendazim (CBD) electrochemical sensor. ZIF67@Ni was prepared by a simple chemical bath method, and C-ZIF67@Ni was obtained by high-temperature carbonization of ZIF67@Ni. Then, MIP layer was prepared by electrochemical in-situ polymerization, with O-aminophenol as functional monomers, CBD acting as template on the surface of the C-ZIF67@Ni-modified glassy carbon electrode (GCE). During the preparation process, the types of functional monomers, the polymerization solution pH, the ratio of functional monomers to template molecules, and the incubation time are optimized. The morphological characteristics, composition information and electrochemical properties of MIP/C-ZIF67@Ni/GCE were investigated in detail under optimal conditions. Physical characterization and electrochemical tests revealed that ZIF67@Ni significantly improves the electron transmission capacity and surface area of the sensor after high-temperature carbonization. C-ZIF67@ Ni has a good synergistic effect on MIP, allowing rapid and specific identification of the test substance. MIP/C-ZIF67@Ni/GCE showed a good linear relationship with CBD in the concentration range from 4 × 10 M to 1 × 10 M, the lowest detection limit was 1.35 × 10 M (S/N = 3) R = 0.9983 and RSD = 2.34. Additionally, the sensor showed good repeatability, stability, and selectivity, and can be used for the detection of carbendazim in soil and water with a recovery of 98% above.
在这项工作中,我们提出了一种两步涂层方法,将 C-ZIF67@Ni 与分子印迹聚合物 (MIP) 结合,开发出一种高灵敏度和高选择性的多菌灵 (CBD) 电化学传感器。ZIF67@Ni 通过简单的化学浴法制备,ZIF67@Ni 经高温碳化得到 C-ZIF67@Ni。然后,通过电化学原位聚合在 C-ZIF67@Ni 修饰的玻碳电极 (GCE) 表面制备 MIP 层,以邻氨基酚为功能单体,CBD 为模板。在制备过程中,优化了功能单体的种类、聚合溶液的 pH 值、功能单体与模板分子的比例和孵育时间。在最佳条件下,详细研究了 MIP/C-ZIF67@Ni/GCE 的形态特征、组成信息和电化学性能。物理特性表征和电化学测试表明,ZIF67@Ni 经高温碳化后显著提高了传感器的电子传输能力和表面积。C-ZIF67@Ni 对 MIP 具有良好的协同作用,能够快速、特异性识别测试物质。MIP/C-ZIF67@Ni/GCE 与 CBD 在 4×10-6 M 至 1×10-5 M 的浓度范围内呈良好的线性关系,最低检测限为 1.35×10-6 M(S/N=3),R=0.9983,RSD=2.34。此外,该传感器还表现出良好的重复性、稳定性和选择性,可用于土壤和水中多菌灵的检测,回收率在 98%以上。