Suppr超能文献

基于网络的方法和机器学习算法用于预测药物-靶点相互作用的比较分析。

Comparative analysis of network-based approaches and machine learning algorithms for predicting drug-target interactions.

作者信息

Jung Yi-Sue, Kim Yoonbee, Cho Young-Rae

机构信息

Division of Software, Yonsei University - Mirae Campus, Republic of Korea.

Division of Software, Yonsei University - Mirae Campus, Republic of Korea; Division of Digital Healthcare, Yonsei University - Mirae Campus, Republic of Korea.

出版信息

Methods. 2022 Feb;198:19-31. doi: 10.1016/j.ymeth.2021.10.007. Epub 2021 Nov 1.

Abstract

Computational prediction of drug-target interactions (DTIs) is of particular importance in the process of drug repositioning because of its efficiency in selecting potential candidates for DTIs. A variety of computational methods for predicting DTIs have been proposed over the past decade. Our interest is which methods or techniques are the most advantageous for increasing prediction accuracy. This article provides a comprehensive overview of network-based, machine learning, and integrated DTI prediction methods. The network-based methods handle a DTI network along with drug and target similarities in a matrix form and apply graph-theoretic algorithms to identify new DTIs. Machine learning methods use known DTIs and the features of drugs and target proteins as training data to build a predictive model. Integrated methods combine these two techniques. We assessed the prediction performance of the selected state-of-the-art methods using two different benchmark datasets. Our experimental results demonstrate that the integrated methods outperform the others in general. Some previous methods showed low accuracy on predicting interactions of unknown drugs which do not exist in the training dataset. Combining similarity matrices from multiple features by data fusion was not beneficial in increasing prediction accuracy. Finally, we analyzed future directions for further improvements in DTI predictions.

摘要

由于药物-靶点相互作用(DTIs)的计算预测在选择DTIs潜在候选药物方面具有高效性,因此在药物重新定位过程中尤为重要。在过去十年中,已经提出了多种预测DTIs的计算方法。我们感兴趣的是哪些方法或技术在提高预测准确性方面最具优势。本文全面概述了基于网络、机器学习和综合的DTI预测方法。基于网络的方法以矩阵形式处理DTI网络以及药物和靶点的相似性,并应用图论算法来识别新的DTIs。机器学习方法使用已知的DTIs以及药物和靶点蛋白的特征作为训练数据来构建预测模型。综合方法将这两种技术结合起来。我们使用两个不同的基准数据集评估了所选的最先进方法的预测性能。我们的实验结果表明,综合方法总体上优于其他方法。一些先前的方法在预测训练数据集中不存在的未知药物的相互作用时准确率较低。通过数据融合组合来自多个特征的相似性矩阵对提高预测准确性并无益处。最后,我们分析了DTI预测进一步改进的未来方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验