Department of Pharmacy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China.
Department of Infection and Liver Diseases, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, China.
Sci Rep. 2021 Nov 4;11(1):21639. doi: 10.1038/s41598-021-00218-5.
Spontaneous bacterial peritonitis (SBP) is a life-threatening complication in patients with cirrhosis. We aimed to develop an explainable machine learning model to achieve the early prediction and outcome interpretation of SBP. We used CatBoost algorithm to construct MODEL-1 with 46 variables. After dimensionality reduction, we constructed MODEL-2. We calculated and compared the sensitivity and negative predictive value (NPV) of MODEL-1 and MODEL-2. Finally, we used the SHAP (SHapley Additive exPlanations) method to provide insights into the model's outcome or prediction. MODEL-2 (AUROC: 0.822; 95% confidence interval [CI] 0.783-0.856), liked MODEL-1 (AUROC: 0.822; 95% CI 0.784-0.856), could well predict the risk of SBP in cirrhotic ascites patients. The 6 most influential predictive variables were total protein, C-reactive protein, prothrombin activity, cholinesterase, lymphocyte ratio and apolipoprotein A1. For binary classifier, the sensitivity and NPV of MODEL-1 were 0.894 and 0.885, respectively, while for MODEL-2 they were 0.927 and 0.904, respectively. We applied CatBoost algorithm to establish a practical and explainable prediction model for risk of SBP in cirrhotic patients with ascites. We also identified 6 important variables closely related to the occurrence of SBP.
自发性细菌性腹膜炎(SBP)是肝硬化患者危及生命的并发症。我们旨在开发一种可解释的机器学习模型,以实现 SBP 的早期预测和结果解释。我们使用 CatBoost 算法构建了包含 46 个变量的 MODEL-1。降维后,我们构建了 MODEL-2。我们计算并比较了 MODEL-1 和 MODEL-2 的灵敏度和阴性预测值(NPV)。最后,我们使用 SHAP(SHapley Additive exPlanations)方法提供模型结果或预测的见解。MODEL-2(AUROC:0.822;95%置信区间[CI]0.783-0.856),与 MODEL-1(AUROC:0.822;95%CI 0.784-0.856)一样,可以很好地预测肝硬化腹水患者发生 SBP 的风险。最具影响力的 6 个预测变量分别为总蛋白、C 反应蛋白、凝血酶原活性、胆碱酯酶、淋巴细胞比值和载脂蛋白 A1。对于二分类器,MODEL-1 的灵敏度和 NPV 分别为 0.894 和 0.885,而 MODEL-2 分别为 0.927 和 0.904。我们应用 CatBoost 算法为肝硬化腹水患者 SBP 风险建立了一个实用且可解释的预测模型。我们还确定了与 SBP 发生密切相关的 6 个重要变量。