Suppr超能文献

MEWS++:通过机器学习模型增强对住院患者临床病情恶化的预测

MEWS++: Enhancing the Prediction of Clinical Deterioration in Admitted Patients through a Machine Learning Model.

作者信息

Kia Arash, Timsina Prem, Joshi Himanshu N, Klang Eyal, Gupta Rohit R, Freeman Robert M, Reich David L, Tomlinson Max S, Dudley Joel T, Kohli-Seth Roopa, Mazumdar Madhu, Levin Matthew A

机构信息

Institute for Healthcare Delivery Science, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Department of Diagnostic Imaging, The Chaim Sheba Medical Center at Tel HaShomer, Sackler Faculty of Medicine, Tel Aviv University, Ramat Gan 52662, Israel.

出版信息

J Clin Med. 2020 Jan 27;9(2):343. doi: 10.3390/jcm9020343.

Abstract

Early detection of patients at risk for clinical deterioration is crucial for timely intervention. Traditional detection systems rely on a limited set of variables and are unable to predict the time of decline. We describe a machine learning model called MEWS++ that enables the identification of patients at risk of escalation of care or death six hours prior to the event. A retrospective single-center cohort study was conducted from July 2011 to July 2017 of adult (age > 18) inpatients excluding psychiatric, parturient, and hospice patients. Three machine learning models were trained and tested: random forest (RF), linear support vector machine, and logistic regression. We compared the models' performance to the traditional Modified Early Warning Score (MEWS) using sensitivity, specificity, and Area Under the Curve for Receiver Operating Characteristic (AUC-ROC) and Precision-Recall curves (AUC-PR). The primary outcome was escalation of care from a floor bed to an intensive care or step-down unit, or death, within 6 h. A total of 96,645 patients with 157,984 hospital encounters and 244,343 bed movements were included. Overall rate of escalation or death was 3.4%. The RF model had the best performance with sensitivity 81.6%, specificity 75.5%, AUC-ROC of 0.85, and AUC-PR of 0.37. Compared to traditional MEWS, sensitivity increased 37%, specificity increased 11%, and AUC-ROC increased 14%. This study found that using machine learning and readily available clinical data, clinical deterioration or death can be predicted 6 h prior to the event. The model we developed can warn of patient deterioration hours before the event, thus helping make timely clinical decisions.

摘要

早期发现有临床病情恶化风险的患者对于及时干预至关重要。传统检测系统依赖于有限的一组变量,无法预测病情恶化的时间。我们描述了一种名为MEWS++的机器学习模型,它能够在病情恶化或死亡事件发生前6小时识别出有护理升级或死亡风险的患者。我们于2011年7月至2017年7月对成年(年龄>18岁)住院患者进行了一项回顾性单中心队列研究,排除了精神科、产妇和临终关怀患者。我们训练并测试了三种机器学习模型:随机森林(RF)、线性支持向量机和逻辑回归。我们使用敏感性、特异性以及接受者操作特征曲线下面积(AUC-ROC)和精确召回率曲线下面积(AUC-PR),将这些模型的性能与传统的改良早期预警评分(MEWS)进行了比较。主要结局是在6小时内从普通病房床位升级到重症监护病房或过渡病房,或死亡。共纳入了96,645例患者,发生了157,984次住院情况和244,343次床位变动。护理升级或死亡的总体发生率为3.4%。RF模型表现最佳,敏感性为81.6%,特异性为75.5%,AUC-ROC为0.85,AUC-PR为0.37。与传统MEWS相比,敏感性提高了37%,特异性提高了11%,AUC-ROC提高了14%。本研究发现,利用机器学习和现成的临床数据,可以在事件发生前6小时预测临床病情恶化或死亡。我们开发的模型可以在事件发生前数小时预警患者病情恶化,从而有助于做出及时的临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2d/7073544/e5f1a811e498/jcm-09-00343-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验