Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.
G3 (Bethesda). 2021 Dec 8;11(12). doi: 10.1093/g3journal/jkab304.
Genome editing using the CRISPR/Cas system has been implemented for various organisms and becomes increasingly popular even in the genetically tractable budding yeast Saccharomyces cerevisiae. Because each CRISPR/Cas system recognizes only the sequences flanked by its unique protospacer adjacent motif (PAM), a certain single system often fails to target a region of interest due to the lack of PAM, thus necessitating the use of another system with a different PAM. Three CRISPR/Cas systems with distinct PAMs, namely SpCas9, SaCas9, and AsCas12a, have been successfully used in yeast genome editing. Their combined use should expand the repertoire of editable targets. However, currently available plasmids for these systems were individually developed under different design principles, thus hampering their seamless use in the practice of genome editing. Here, we report a series of Golden Gate Assembly-compatible backbone vectors designed under a unified principle to exploit the three CRISPR/Cas systems in yeast genome editing. We also created a program to assist the design of genome-editing plasmids for individual target sequences using the backbone vectors. Genome editing with these plasmids demonstrated practically sufficient efficiency in the insertion of gene fragments to essential genes (median 52.1%), the complete deletion of an open reading frame (median 78.9%), and the introduction of single amino acid substitutions (median 79.2%). The backbone vectors with the program would provide a versatile toolbox to facilitate the seamless use of SpCas9, SaCas9, and AsCas12a in various types of genome manipulation, especially those that are difficult to perform with conventional techniques in yeast genetics.
利用 CRISPR/Cas 系统进行基因组编辑已经在各种生物体中得到实施,并且在遗传上易于操作的 budding 酵母 Saccharomyces cerevisiae 中变得越来越流行。由于每个 CRISPR/Cas 系统仅识别其独特的前导间隔相邻基序(PAM)侧翼的序列,如果由于缺乏 PAM,某个单一系统通常无法靶向感兴趣的区域,因此需要使用具有不同 PAM 的另一个系统。三种具有不同 PAM 的 CRISPR/Cas 系统,即 SpCas9、SaCas9 和 AsCas12a,已成功用于酵母基因组编辑。它们的联合使用应该会扩大可编辑靶标的范围。然而,目前这些系统的可用质粒是根据不同的设计原则分别开发的,因此妨碍了它们在基因组编辑实践中的无缝使用。在这里,我们报告了一系列基于统一原则设计的 Golden Gate Assembly 兼容骨架载体,用于在酵母基因组编辑中利用这三种 CRISPR/Cas 系统。我们还创建了一个程序,使用骨架载体来辅助设计针对单个靶序列的基因组编辑质粒。使用这些质粒进行基因组编辑,在插入基因片段到必需基因(中位数 52.1%)、完全删除开放阅读框(中位数 78.9%)和引入单个氨基酸取代(中位数 79.2%)方面表现出实际上足够的效率。该程序的骨架载体将提供一个通用工具包,以促进 SpCas9、SaCas9 和 AsCas12a 在各种类型的基因组操作中的无缝使用,特别是在酵母遗传学中难以使用传统技术进行的操作。