Channing Division of Network Medicine.
Division of Pulmonary and Critical Care Medicine, and.
Am J Respir Crit Care Med. 2022 Jan 15;205(2):161-170. doi: 10.1164/rccm.202107-1584OC.
The ability of peripheral blood biomarkers to assess chronic obstructive pulmonary disease (COPD) risk and progression is unknown. Genetics and gene expression may capture important aspects of COPD-related biology that predict disease activity. Develop a transcriptional risk score (TRS) for COPD and assess the contribution of the TRS and a polygenic risk score (PRS) for disease susceptibility and progression. We randomly split 2,569 COPDGene (Genetic Epidemiology of COPD) participants with whole-blood RNA sequencing into training ( = 1,945) and testing ( = 624) samples and used 468 ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points) COPD cases with microarray data for replication. We developed a TRS using penalized regression (least absolute shrinkage and selection operator) to model FEV/FVC and studied the predictive value of TRS for COPD (Global Initiative for Chronic Obstructive Lung Disease 2-4), prospective FEV change (ml/yr), and additional COPD-related traits. We adjusted for potential confounders, including age and smoking. We evaluated the predictive performance of the TRS in the context of a previously derived PRS and clinical factors. The TRS included 147 transcripts and was associated with COPD (odds ratio, 3.3; 95% confidence interval [CI], 2.4-4.5; < 0.001), FEV change (β, -17 ml/yr; 95% CI, -28 to -6.6; = 0.002), and other COPD-related traits. In ECLIPSE cases, we replicated the association with FEV change (β, -8.2; 95% CI, -15 to -1; = 0.025) and the majority of other COPD-related traits. Models including PRS, TRS, and clinical factors were more predictive of COPD (area under the receiver operator characteristic curve, 0.84) and annualized FEV change compared with models with one risk score or clinical factors alone. Blood transcriptomics can improve prediction of COPD and lung function decline when added to a PRS and clinical risk factors.
外周血生物标志物评估慢性阻塞性肺疾病(COPD)风险和进展的能力尚不清楚。遗传学和基因表达可能捕捉到与 COPD 相关的生物学的重要方面,这些生物学可以预测疾病的活动。我们开发了 COPD 的转录风险评分(TRS),并评估了 TRS 和多基因风险评分(PRS)对疾病易感性和进展的贡献。我们随机将 COPDGene(COPD 的遗传流行病学)的 2569 名参与者的全血 RNA 测序分为训练( = 1945)和测试( = 624)样本,并使用 468 名 ECLIPSE(评估 COPD 以确定预测替代终点的纵向研究)的 COPD 病例的微阵列数据进行复制。我们使用惩罚回归(最小绝对收缩和选择算子)来建立一个 TRS,以对 FEV/FVC 进行建模,并研究了 TRS 对 COPD(全球倡议慢性阻塞性肺疾病 2-4)、前瞻性 FEV 变化(ml/yr)和其他 COPD 相关特征的预测价值。我们调整了潜在的混杂因素,包括年龄和吸烟。我们在先前推导的 PRS 和临床因素的背景下评估了 TRS 的预测性能。该 TRS 包括 147 个转录本,与 COPD 相关(优势比,3.3;95%置信区间 [CI],2.4-4.5; < 0.001),与 FEV 变化(β,-17 ml/yr;95% CI,-28 至-6.6; = 0.002)和其他 COPD 相关特征相关。在 ECLIPSE 病例中,我们复制了与 FEV 变化(β,-8.2;95% CI,-15 至-1; = 0.025)和大多数其他 COPD 相关特征的关联。与仅包含 PRS、TRS 或临床因素的模型相比,包含 PRS、TRS 和临床因素的模型对 COPD(接收者操作特征曲线下面积,0.84)和年化 FEV 变化的预测能力更高。当添加到 PRS 和临床危险因素时,血液转录组学可以提高 COPD 和肺功能下降的预测能力。