Suppr超能文献

3D 生物打印负载间充质干细胞的仿生多相支架促进骨关节炎大鼠模型中骨软骨缺损的有效修复

3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model.

机构信息

Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Marine Medical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.

Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

出版信息

Biomaterials. 2021 Dec;279:121216. doi: 10.1016/j.biomaterials.2021.121216. Epub 2021 Oct 27.

Abstract

Osteochondral defect repair in osteoarthritis (OA) remains an unsolved clinical problem due to the lack of enough seed cells in the defect and chronic inflammation in the joint. To address this clinical need, we designed a bone marrow-derived mesenchymal stem cell (BMSC)-laden 3D-bioprinted multilayer scaffold with methacrylated hyaluronic acid (MeHA)/polycaprolactone incorporating kartogenin and β-TCP for osteochondral defect repair within each region. BMSC-laden MeHA was designed to actively introduce BMSCs in situ, and diclofenac sodium (DC)-incorporated matrix metalloproteinase-sensitive peptide-modified MeHA was induced on the BMSC-laden scaffold as an anti-inflammatory strategy. BMSCs in the scaffolds survived, proliferated, and produced large amounts of cartilage-specific extracellular matrix in vitro. The effect of BMSC-laden scaffolds on osteochondral defect repair was investigated in an animal model of medial meniscectomy-induced OA. BMSC-laden scaffolds facilitated chondrogenesis by promoting collagen II and suppressed interleukin 1β in osteochondral defects of the femoral trochlea. Congruently, BMSC-laden scaffolds significantly improved joint function of the injured leg with respect to the ground support force, paw grip force, and walk gait parameters. Therefore, this research demonstrates the potential of 3D-bioprinted BMSC-laden scaffolds to simultaneously inhibit joint inflammation and promote cartilage defect repair in OA joints.

摘要

骨关节炎(OA)中的软骨下骨缺损修复仍然是一个尚未解决的临床问题,这是由于缺损部位缺乏足够的种子细胞和关节内的慢性炎症。为了解决这一临床需求,我们设计了一种骨髓间充质干细胞(BMSC)负载的 3D 生物打印多层支架,其中含有甲基丙烯酰化透明质酸(MeHA)/聚己内酯,负载卡托利根素和β-TCP,用于修复每个区域的骨软骨缺损。BMSC 负载的 MeHA 旨在主动原位引入 BMSCs,而载有双氯芬酸钠(DC)的基质金属蛋白酶敏感肽修饰的 MeHA 则作为一种抗炎策略被诱导到 BMSC 负载的支架上。支架中的 BMSCs 在体外存活、增殖,并产生大量的软骨特异性细胞外基质。通过内侧半月板切除术诱导的 OA 动物模型研究了 BMSC 负载支架对骨软骨缺损修复的影响。BMSC 负载的支架通过促进胶原蛋白 II 和抑制软骨下骨缺损中的白细胞介素 1β来促进软骨生成。一致地,BMSC 负载的支架显著改善了受伤腿的关节功能,包括地面支撑力、爪子握力和步行步态参数。因此,这项研究证明了 3D 生物打印的 BMSC 负载支架在 OA 关节中同时抑制关节炎症和促进软骨缺损修复的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验