Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China.
College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
J Colloid Interface Sci. 2022 Feb 15;608(Pt 2):1257-1267. doi: 10.1016/j.jcis.2021.10.089. Epub 2021 Oct 24.
In this study, a series of one-dimensional (1D)/two-dimensional (2D) heterostructure hybrids were fabricated through the in situ growth of a Co and Ni bimetallic zeolitic imidazolate framework (CoNi-ZIF) around N-doped carbon nanotubes (N-CNTs). The hybrids were further exploited as effective supercapacitor materials. The N-CNTs were prepared by carbonizing a mixture of glucose and the melamine-cyanuric acid complex at a high temperature (900 °C) under N atmosphere and applied as the template for the in situ synthesis of CoNi-ZIF nanosheets (NSs). The 1D N-CNTs in the hybrids can act as the high-way for charge transfer to boost the faradaic reactions. Changing the usage of metal precursors not only provided abundant redox reaction sites in 2D CoNi-ZIF NSs but also modulated the microstructures and chemical components of the hybrids. The integration of the features of N-CNTs and CoNi-ZIF NSs can result in a synergistic effect between N-CNTs and CoNi-ZIF NSs. Therefore, the obtained CoNi-ZIFs and N-CNTs hybrid (CoNi-ZIF@N-CNT) exhibited superior electrochemical capacitive performance. Comparison revealed that the CoNi-ZIF@N-CNT-2 hybrid, which was prepared with a 1:1 mass ratio of Co(NO)·6HO and Ni(NO)·6HO, displayed the largest specific capacitance of 1118F g at 1 A g, which was higher than the capacitance of most reported metal-organic framework (MOF)-based supercapacitor electrodes. Moreover, the asymmetric supercapacitor based on the CoNi-ZIF@N-CNT-2 electrode exhibited a high energy density of 51.1 Wh kg at the power density of 860.1 W kg and good cycle stability. This work can provide a facile and effective way for the fabrication of heterostructured 1D/2D nanostructures based on 2D MOFs for advanced energy storage.
在这项研究中,通过在氮掺杂碳纳米管(N-CNTs)周围原位生长 Co 和 Ni 双金属沸石咪唑酯骨架(CoNi-ZIF),制备了一系列一维(1D)/二维(2D)异质结构杂化物。这些杂化物进一步被开发为有效的超级电容器材料。N-CNTs 通过在 N 气氛下将葡萄糖和三聚氰胺-均三嗪复合物的混合物在高温(900°C)碳化制备,并用作原位合成 CoNi-ZIF 纳米片(NSs)的模板。杂化物中的 1D N-CNTs 可以作为电荷转移的高速通道,以促进法拉第反应。改变金属前体的使用不仅在二维 CoNi-ZIF NSs 中提供了丰富的氧化还原反应位点,而且还调节了杂化物的微结构和化学成分。N-CNTs 和 CoNi-ZIF NSs 的特性的集成可以导致 N-CNTs 和 CoNi-ZIF NSs 之间的协同效应。因此,所获得的 CoNi-ZIF 和 N-CNTs 杂化物(CoNi-ZIF@N-CNT)表现出优异的电化学电容性能。比较表明,用 Co(NO)·6HO 和 Ni(NO)·6HO 的 1:1 质量比制备的 CoNi-ZIF@N-CNT-2 杂化物在 1 A g 下具有 1118F g 的最大比电容,高于大多数报道的金属-有机骨架(MOF)-基于超级电容器电极的电容。此外,基于 CoNi-ZIF@N-CNT-2 电极的非对称超级电容器在 860.1 W kg 的功率密度下具有 51.1 Wh kg 的高能量密度和良好的循环稳定性。这项工作为基于二维 MOF 的异质结构 1D/2D 纳米结构的制备提供了一种简单有效的方法,可用于先进的储能。