Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, 9747AG, the Netherlands.
State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
Sci Total Environ. 2022 Mar 1;810:151284. doi: 10.1016/j.scitotenv.2021.151284. Epub 2021 Nov 2.
Carbon isotope signatures are used to gain insight into sources and atmospheric processing of carbonaceous aerosols. Since elemental carbon (EC) is chemically stable, it is possible to apportion the main sources of EC (C3/C4 plant burning, coal combustion, and traffic emissions) using a dual C-C isotope approach. The dual-isotope source apportionment crucially relies on accurate knowledge of C source signatures, which are seldom measured for EC. In this work, we present C signatures of organic carbon (OC) and EC for relevant sources in China. EC was isolated for C analysis based on the OC/EC split point of a thermal-optical method (EUSAAR_2 protocol). A series of sensitivity studies were conducted to investigate the EC separation and the relationship of the thermal-optical method to other EC isolation methods. Our results show that, first, the C signatures of raw materials and EC related to traffic emissions can be separated into three groups according to geographical location. Second, the C signature of OC emitted by the flaming combustion of C4 plants is strongly depleted in C compared to the source materials, and therefore EC is a better tracer for this source than total carbon (TC). A comprehensive literature review of C source signatures (of raw materials, of TC, and of EC isolated using a variety of thermal methods) was conducted. Accordingly, we recommend composite C source signatures of EC with uncertainties and detailed application conditions. Using these source signatures of EC in an example dual-isotope source apportionment study shows an improvement in precision. In addition, C signatures of OC were measured at three different desorption temperatures roughly corresponding to semi-volatile, low-volatile, and non-volatile OC fractions. Each source category shows a characteristic trend of C signatures with desorption temperature, which is likely related to different OC formation processes during combustion.
碳同位素特征可用于深入了解含碳气溶胶的来源和大气处理过程。由于元素碳 (EC) 化学性质稳定,因此可以使用双 C-C 同位素方法对 EC 的主要来源(C3/C4 植物燃烧、煤炭燃烧和交通排放)进行分配。双同位素源分配方法的关键依赖于对 EC 源特征的准确了解,而这些特征很少被测量。在这项工作中,我们提供了中国相关来源的有机碳 (OC) 和 EC 的 C 特征。根据热光法 (EUSAAR_2 协议) 的 OC/EC 分割点,基于 OC/EC 分割点对 EC 进行了 C 分析。进行了一系列敏感性研究,以研究 EC 的分离以及热光法与其他 EC 分离方法的关系。我们的结果表明,首先,根据地理位置,与交通排放有关的原材料和 EC 的 C 特征可以分为三组。其次,与 C4 植物的燃烧燃烧有关的 OC 的 C 特征与源材料相比强烈贫化 C,因此 EC 是比总碳 (TC) 更好的这种来源的示踪剂。对 C 源特征(原材料、TC 和使用各种热方法分离的 EC)进行了全面的文献综述。因此,我们建议 EC 的综合 C 源特征,包括不确定性和详细的应用条件。在示例双同位素源分配研究中使用这些 EC 源特征可提高精度。此外,还在三个不同的解吸温度下测量了 OC 的 C 特征,这大致对应于半挥发性、低挥发性和非挥发性 OC 分数。每个来源类别都显示出与解吸温度相关的 C 特征特征趋势,这可能与燃烧过程中不同的 OC 形成过程有关。