Center for Theoretical Neuroscience, Columbia University, New York City, NY, USA.
Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Department of Psychology, Princeton University, Princeton, NJ, USA.
Neuroimage. 2021 Dec 15;245:118580. doi: 10.1016/j.neuroimage.2021.118580. Epub 2021 Nov 3.
A key problem in functional magnetic resonance imaging (fMRI) is to estimate spatial activity patterns from noisy high-dimensional signals. Spatial smoothing provides one approach to regularizing such estimates. However, standard smoothing methods ignore the fact that correlations in neural activity may fall off at different rates in different brain areas, or exhibit discontinuities across anatomical or functional boundaries. Moreover, such methods do not exploit the fact that widely separated brain regions may exhibit strong correlations due to bilateral symmetry or the network organization of brain regions. To capture this non-stationary spatial correlation structure, we introduce the brain kernel, a continuous covariance function for whole-brain activity patterns. We define the brain kernel in terms of a continuous nonlinear mapping from 3D brain coordinates to a latent embedding space, parametrized with a Gaussian process (GP). The brain kernel specifies the prior covariance between voxels as a function of the distance between their locations in embedding space. The GP mapping warps the brain nonlinearly so that highly correlated voxels are close together in latent space, and uncorrelated voxels are far apart. We estimate the brain kernel using resting-state fMRI data, and we develop an exact, scalable inference method based on block coordinate descent to overcome the challenges of high dimensionality (10-100K voxels). Finally, we illustrate the brain kernel's usefulness with applications to brain decoding and factor analysis with multiple task-based fMRI datasets.
功能磁共振成像(fMRI)中的一个关键问题是从噪声高维信号中估计空间活动模式。空间平滑提供了一种正则化这些估计的方法。然而,标准的平滑方法忽略了这样一个事实,即神经活动中的相关性可能以不同的速率在不同的大脑区域中衰减,或者在解剖或功能边界处表现出不连续性。此外,这种方法没有利用这样一个事实,即由于双侧对称性或大脑区域的网络组织,广泛分离的大脑区域可能表现出强烈的相关性。为了捕捉这种非平稳的空间相关结构,我们引入了大脑核函数,这是一种用于全脑活动模式的连续协方差函数。我们根据从 3D 大脑坐标到潜在嵌入空间的连续非线性映射来定义大脑核函数,该映射由高斯过程(GP)参数化。大脑核函数将体素之间的先验协方差定义为它们在嵌入空间中的位置之间距离的函数。GP 映射对大脑进行非线性变形,使得高度相关的体素在潜在空间中彼此靠近,而不相关的体素彼此远离。我们使用静息态 fMRI 数据来估计大脑核函数,并开发了一种基于块坐标下降的精确、可扩展的推断方法,以克服高维性(10-100K 个体素)的挑战。最后,我们通过应用于多个基于任务的 fMRI 数据集的脑解码和因子分析,说明了大脑核函数的有用性。