711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA.
UES, Inc., Dayton, OH, 45432, USA.
Sci Rep. 2021 Nov 5;11(1):21768. doi: 10.1038/s41598-021-01225-2.
Rapid design, screening, and characterization of biorecognition elements (BREs) is essential for the development of diagnostic tests and antiviral therapeutics needed to combat the spread of viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To address this need, we developed a high-throughput pipeline combining in silico design of a peptide library specific for SARS-CoV-2 spike (S) protein and microarray screening to identify binding sequences. Our optimized microarray platform allowed the simultaneous screening of ~ 2.5 k peptides and rapid identification of binding sequences resulting in selection of four peptides with nanomolar affinity to the SARS-CoV-2 S protein. Finally, we demonstrated the successful integration of one of the top peptides into an electrochemical sensor with a clinically relevant limit of detection for S protein in spiked saliva. Our results demonstrate the utility of this novel pipeline for the selection of peptide BREs in response to the SARS-CoV-2 pandemic, and the broader application of such a platform in response to future viral threats.
快速设计、筛选和鉴定生物识别元件(BREs)对于开发诊断测试和抗病毒疗法至关重要,这些测试和疗法是控制病毒(如严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2))传播所必需的。为满足这一需求,我们开发了一种高通量的组合方法,将针对 SARS-CoV-2 刺突(S)蛋白的肽文库的计算机设计与微阵列筛选相结合,以鉴定结合序列。我们优化的微阵列平台允许同时筛选约 2.5k 个肽,并快速鉴定结合序列,从而选择了四个对 SARS-CoV-2 S 蛋白具有纳摩尔亲和力的肽。最后,我们成功地将其中一个顶级肽整合到电化学传感器中,该传感器对唾液中 S 蛋白的检测限具有临床相关性。我们的研究结果证明了这种新型组合方法在应对 SARS-CoV-2 大流行时选择肽 BRE 的实用性,以及该平台在应对未来病毒威胁时的更广泛应用。